

Andreas Rejbrand

AlgoSim 2.0
User’s Guide

AlgoSim 2.0 User’s Guide

Copyright © 2010 Andreas Rejbrand

http://www.algosim.se

http://english.rejbrand.se

Document version 1.29

2010-08-15

AlgoSim 2.0 User’s Guide

 3/110

Table of Contents

PREFACE ... 6

THE MAIN WINDOW .. 7

PERFORMING CALCULATIONS .. 9

KEYBOARD INPUT ... 10

VARIABLES AND FUNCTIONS ... 12

THE EXPONENTIATION OPERATOR ... 12

BASE- CALCULATIONS .. 12

ABORTING A SLOW PROCEDURE .. 12

AUTOMATIC “ANS” ARGUMENT (AAA) ... 19

THE SEMICOLON OPERATOR ... 20

VISUALISATION .. 21

2D GRAPHS ... 21

2D PARAMETRISED CURVES .. 22

COLOURED SETS .. 23

3D SURFACES .. 25

3D CURVES ... 29

IMPLICIT SETS .. 31

NON-CARTESIAN COORDINATE SYSTEMS .. 32

COMPLEX VISUALISATION .. 34

COLOURED PLANES ... 36

THE BEAUTY OF THE TWO-STEP APPROACH ... 38

FINAL WORDS ON VISUALISATION ... 41

PHYSICAL SIMULATIONS ... 42

FORCE FIELDS .. 42

FLOWS ... 43

AUDITORY VISUALISATION ... 45

MIDI FUNCTIONS .. 45

SOME MORE FUNCTIONS IN FOCUS ... 46

REAL AND COMPLEX NUMBERS ... 46

VECTORS AND MATRICES ... 46

TEXTS (STRINGS) .. 47

PIXMAPS .. 47

SOUNDS AND MIDI FUNCTIONS .. 48

MORE .. 48

THE OPERATOR TABLE .. 49

PROGRAMMING ... 50

THE IF CONDITIONAL .. 50

THE REPEAT LOOP .. 51

THE DOWHILE LOOP .. 53

THE FOR LOOP .. 53

THE ITERATE LOOP ... 54

4/110

ENTERING PROGRAMS .. 54

A FEW EXAMPLES .. 55

Möbius.prg .. 55

doors.prg ... 55

waveSim.prg .. 56

rutherfordScattering2.prg ... 58

mirrorSim.prg .. 59

PROGRAMMING REFERENCE CHART ... 62

DATABASE OF MATHEMATICAL AND PHYSICAL CONSTANTS .. 63

DICTIONARIES .. 64

SAVING/LOADING DATA .. 65

APPENDIX I: FUNCTION REFERENCE ... 67

APPENDIX II: PRE-DEFINED USER-CUSTOMISABLE FUNCTIONS ... 100

startup.prg .. 100

APPENDIX III: EXAMPLE PROGRAMS .. 101

APPENDIX IV: DEFAULT OPERATOR TABLE ... 104

APPENDIX V: DEFAULT TABLE OF CONSTANTS .. 106

APPENDIX VI: ONLINE HELP .. 107

APPENDIX VII: A FEW TIPS & TRICKS ... 108

AlgoSim 2.0 User’s Guide

 5/110

Happiness is like a wind, at times blowing through the consciousness,

filling the individual with delight and inspiration to live.

 One ought to capture this wind, to locate its sources, and try to multiply them.

Then, in times of darkness, these sources may be opened, flooding the individual with exhilaration.

AlgoSim 2.0 User’s Guide

6/110

Preface
This document is intended to give the reader the knowledge required to use all major features of AlgoSim

2.0, an advanced numerical mathematical software developed by Andreas Rejbrand. More information

about the software is available at www.algosim.se. You show not be afraid of contacting the develop-

er/author at andreas@rejbrand.se in case you have any questions or comments.

http://www.algosim.se/
mailto:andreas@rejbrand.se

AlgoSim 2.0 User’s Guide

 7/110

The Main Window
The Main Window is divided into four parts. To the left there is a column of buttons. These control the

global behaviour of the application. From the top to the bottom, these are

 Complex Mode

If active (orange) AlgoSim will assume the user is working with the entire number system ℂ ra-

ther than ℝ. For the vast majority of cases, it does not matter whether Complex Mode is on or off –

all real calculations will work in Complex Mode, and most complex calculations will work in Real

Mode. But there are cases where this setting really matters. For instance, if you try to compute

arcsin(2) in Real Mode, you will get an error, because there is no real number satisfying the

equation in . In Complex Mode, however, arcsin(2) will return 1.57079632679 −

1.31695789692⋅i.

 Approximate Eq.

If active (orange), very small numbers will be approximated by zero. In most cases this is desira-

ble. For instance, in Approximate Eq. Mode, sin(π) = 0, whereas sin(π) = -5.42101086243⋅10^-20

in normal mode, due to rounding errors. However, if you are working with very small numbers,

such as the elementary charge, the electron mass, or Planck’s constant, you must not use this

mode, for if you do, all these small numbers will be treated as equal to zero!

 Num. Digits = N

Click this button to set the number of digits that are displayed in outputs. The maximum number

of digits is 18.

 Basis Vect. Notation

If active (orange) the notation

 (

)

will be used instead of () when it comes to vectors.

 True Sets

If active (orange), AlgoSim will make sure that a set does not contain the same element more than

one time. When you add an element to a set, if this option is on, AlgoSim will iterate through all

existing elements in the set to see if the new element already belongs to the set. If it does, the

“new” element will not be added to the set. If the option is off, no such control is performed, so a

set may very well contain the same element more than once. In most cases, when you work with

sets as mathematical sets, you – of course – want to use this option. However, there are cases

where this option needs to off. First, it does take quite some time to perform the check in large

sets, so when working with huge sets (of points, for instance), you might want to disable this op-

tion. Also, if you have a set that you will use to draw a small number of points connected by

straight lines, you might actually want the same element (point) to occur more than once.

 Modular Arithm. Off/N

Click this button to start counting modulo N. To disable the option, click the button and enter “off”

rather than a positive integer.

 Full Screen

If active (orange), the Main Window will occupy the entire computer screen, rather than just a

window. In AlgoSim, entering full-screen is also possible by maximizing the Main Window.

AlgoSim 2.0 User’s Guide

8/110

 Modular Messages

If active (orange), error messages will not be printed out in the console (as normal output), but

will rather be displayed in modal message boxes.

 Quick Plot

Displays the Quick Plot dialog box. The standard way of plotting function graphs is described in

great detail this document. The Quick Plot function is a non-standard way of plotting 2D function

graphs. It does not allow any fine control over the plotting process, but is very simple and conven-

ient to use. Feel free to use this function for quick plotting of simple graphs.

 Programs

Displays the Programs menu, from which you can execute, create, and browse AlgoSim programs.

The largest panel in the Main Window is the Console. Here you enter commands and here the results are

displayed. To the right there are two panels: Imaging and Variables. In Imaging graphical output is dis-

played, i.e. 2D spaces, 3D spaces, and bitmaps. In Variables all variables are displayed, together with their

data types and (optional) descriptions. If you double-click somewhere in the list view of variables, the

advanced variable manager window will appear. From this it is easy to search and export variables.

 To show/hide the left-most column of buttons, press F5.

 To show both the Console and the Imaging/Variables column (as default), press F2.

 To show only the Console, and not the Imaging/Variables column, press F3.

 To show only the Imaging panel, and not the console or the variables panel, press F4.

 To toggle full-screen mode on/off, press F11.

AlgoSim 2.0 User’s Guide

 9/110

Performing Calculations
Below the fundamental data types in AlgoSim are listed.

 Real/Complex Numbers

Real numbers are entered as usual, using the period “.” as the decimal separator. To write a nega-

tive real number, place the unary minus sign “-” prefix operator before the number, as in -21. No-

tice that the unary minus operator “-” is shorter than the binary minus operator “−”.

Complex numbers are constructed from real numbers by means of complex addition and multipli-

cation, and the predefined constant , the imaginary unit. For instance, one may write 5 + 2⋅i. Us-

ing the complex exponential function, complex numbers may also be entered in polar form:

6⋅ ^(4⋅) or 6⋅exp(4⋅).

 Real/Complex Vectors

Vectors are entered using the pre-defined vector creator circumfix operator ❨❩, which can be in-

serted by Ctrl+E (as in vector). For instance, ❨2, 5, 2❩ or ❨5⋅ , 0, 5❩. Vectors can be added, and

multiplied by a scalar. The scalar product may either be written (|) or ⋅ where and are

real or complex vectors. The cross product is written .

 Real/Complex Matrices

Matrices are entered as vectors of vectors using the same operator ❨❩, inserted using Ctrl+E. Each

vector in the vector is a row in the matrix. For instance, the orthogonal projection on the plane

 in ℝ may be represented by the matrix ❨❨1, 0, 0❩, ❨0, 1, 0❩, ❨0, 0, 0❩❩. Matrices can be

added, multiplied by a scalar, and matrices may be multiplied to each other. They may also be

raised to any integer power; a negative power indicates the computation of the inverse matrix,

which commutes with and non-zero power of the matrix. In particular, to compute the inverse of

the matrix , simply write ^(-1). A matrix may be multiplied with a vector from the right – this is

very important because this may be considered a linear transformation. (Of course, the vector is

then considered to be a column matrix.) For a real matrix (A asterisk) means the transpose,

and for a complex matrix means the Hermitian transpose, the adjoint matrix, or the conjugate

transpose. If you only wish to transpose a complex matrix, use the command transpose(A).

 Strings

A string is a piece of text – an array of Unicode characters. A string is represented by double

quotes, such as “Hello World!”. Strings may be added to each other, and the product between a

natural number and a string is equal to the string plus itself times.

 Sets

A set is a collection of other objects, written { a, b, c, …, } where a, b, c, … are the members of the

set. A set may contain any AlgoSim object except other sets and sounds. The binary operators ∪

(union), ∩ (intersection), ∖ (set difference), and × (Cartesian product) are all fundamental set op-

erators. However, × only works for sets of numbers, because the elements in the Cartesian prod-

uct must be valid AlgoSim objects, and a vector is indeed a valid AlgoSim object.

 Pixmaps

A pixmap is a raster (bitmap) image, like an illustration, or a photograph of Albus Dumbledore.

Pixmaps may be saved as BMP, PNG (recommended), and PM files, and BMP, PNG, PM, and XBM

image files may be imported.

AlgoSim 2.0 User’s Guide

10/110

 Sounds

A sound is a sampled waveform, like the ones found on audio compact discs. Sounds may be

saved as WAV (PCM) files, and such files may also be imported. (Ordered) sets (of real numbers),

such as the image of a function like in , may be converted to sounds, and played using the

computer’s speakers.

 Tables

A table is a two-dimensional array of strings, possibly with per-cell formatting.

 Logical Values (true or false)

Valid operators include ∧, ∨, ⊻, and ¬.

 Structures (advanced)

Structures are objects that contain named members, each of which has a value: either a number, a

string, a boolean, or another structure. For instance, the date function returns a structure with

the members year, month, day, etc. To obtain the value of a particular member, use the colon op-

erator, as in “ans:year”. Custom structures can be created by means of the createStruct function.

Keyboard Input

By now you have probably asked yourself how to enter characters that are not on your keyboard. Of

course you could use some standard method, such as charmap, but this would be extremely tedious. Ra-

ther, in AlgoSim special characters are entered by typing “\chrname” in the console. When such a code has

been input, followed by a non-alphanumeric character (such as a space, a bracket, a comma, a colon, etc.)

it is replaced by the actual character. For instance, to enter ∪, simply type “\union” at the console. Below is

a table of all pre-defined codes.

\c ©

\r ®

\tm ™

\interrobang ‽

\deg °

\alef ℵ

\numero №

\benzene ⌬

\keyboard ⌨

\floralheart ❦

\h ℎ

\hbar ℏ

\alpha α

\Alpha Α

\beta β

\Beta Β

\gamma γ

\Gamma Γ

\delta δ

\Delta Δ

\epsilon ε

\Epsilon Ε

\zeta ζ

\Zeta Ζ

\eta η

\Eta Η

\theta θ

\Theta Θ

\iota ι

\Iota Ι

\kappa κ

\Kappa Κ

\lambda λ

\Lambda Λ

\mu μ

\Mu Μ

\nu ν

\Nu Ν

\xi ξ

\Xi Ξ

\omikron ο

\Omicron Ο

\pi π

\Pi Π

\rho ρ

\Rho Ρ

\sigma σ

\Sigma

\tau τ

\Tau Σ

\upsilon υ

\Upsilon Τ

\phi φ

\Phi Υ

\chi χ

\Chi Φ

\psi ψ

\Psi Χ

\omega ω

\Omega Ψ

\OmegaPi ϖ

\cdot ⋅

\times ×

\mult ×

\cross ×

\minus −

\forall ∀

\complement ∁

AlgoSim 2.0 User’s Guide

 11/110

\partial ∂

\exists ∃

\nexists ∄

\emptyset ∅

\nabla ∇

\in ∈

\nin ∉

\contains ∋

\ncontains ∌

\qed ∎

\endofproof ∎

\product ∏

\sum ∑

\plusminus ±

\pm ±

\minusplus ∓

\mp ∓

\setminus ∖

\squareroot √

\sqrt √

\infinity ∞

\inf ∞

\proportionalto ∝

\proportional ∝

\prop ∝

\rightangle ∟

\angle ∠

\parallelto ∥

\parallel ∥

\nparallelto ∦

\nparallel ∦

\and ∧

\or ∨

\xor ⊻

\not ¬

\intersection ∩

\intersect ∩

\isect ∩

\union ∪

\subset ⊂

\subseteq ⊆

\subsetneq ⊊

\superset ⊃

\superseteq ⊇

\supersetneq ⊋

\integral ∫

\int ∫

\iint ∬

\iiint ∭

\cint ∮

\ciint ∯

\ciiint ∰

\therefore ∴

\because ∵

\assign ≔

:= ≔

\definition ≡

\def ≡

\eqdef ≝

\qeq ≟

\notequalto ≠

\notequal ≠

\ne ≠

<> ≠

!= ≠

\leq ≤

\le ≤

<= ≤

\geq ≥

\ge ≥

>= ≥

\muchlessthan ≪

<< ≪

\muchgreaterthan

 ≫

>> ≫

\cdots ⋯

\dots …

\approx ≈

\napprox ≉

\approxeq ≅

\approxlt ≲

\approxgt ≳

\permille ‰

\R ℝ

\Q ℚ

\Z ℤ

\N ℕ

\C ℂ

\H ℍ

\leftarrow ←

\larr ←

\uparrow ↑

\uarr ↑

\rightarrow →

\rarr →

\downarrow ↓

\darr ↓

\leftrightarrow ↔

\lrarr ↔

\updownarrow ↕

\udarr ↕

\Leftarrow ⇐

\Larr ⇐

\Uparrow ⇑

\Uarr ⇑

\Rightarrow ⇒

\Rarr ⇒

\Downarrow ⇓

\Darr ⇓

\Leftrightarrow ⇔

\LRarr ⇔

\Updownarrow ⇕

\UDarr ⇕

\leftoverrightarrow

 ⇆

\lorarr ⇆

\leftoverrightharpoo

n ⇋

\lorhar ⇋

\mapsto ↦

\to ↦

-> ↦

\lfloor ⌊

\lf ⌊

\rfloor ⌋

\rf ⌋

\lceil ⌈

\lc ⌈

\rceil ⌉

\rc ⌉

\dot ⋅

\ortho ⊥

\lvect ❨

\lv ❨

\rvect ❩

\rv ❩

\vect ❨❩

\v ❨❩

\uparr ↑

AlgoSim 2.0 User’s Guide

12/110

\oplus ⊕ =: ≕

The symbols ⋅ and × are so common that they can be entered with the “*” key on the keyboard. If you press

this key once, ⋅ is inserted. Twice and × is inserted, and the third time * is inserted. In addition, the first

time you press the “-” key, the binary minus sign – is inserted, and the second time the unary minus sign -

is inserted.

Furthermore, vector brackets ❨❩ are inserted by Ctrl+E, set brackets {} by Ctrl+S and interval brackets []

with Ctrl+I. Ceiling brackets (round up) ⌈⌉ are inserted by Ctrl+U, and floor brackets (round down) ⌊⌋ by

Ctrl+D. The exponentiation operator ↑ is inserted by Ctrl+R.

Variables and Functions

Two very important concepts are the variable and the function. To declare a variable named MyVar and

assign the value MyVal to it, simply write MyVar ≔ MyVal, such as ϕ ≔ 2⋅ π. The character “≔” is inserted

by typing “:” followed by “=”. To declare a function, use the binary function creator operator , which

takes a comma-separated string of independent variables (function arguments) and an expression (also a

string) in these variables, and assign the function to an identifier. A function may accept any type of Al-

goSim variable, and may return a value of any type. The types need not be specified in advanced, and the

very same function may work with inputs of different types, as well as it may output data of different

types depending on the input. For instance,

double ≔ "x" ↦ "2⋅x"

double(100)

double(❨3, 1, 4❩)

double("test")

will return 200, ❨6, 2, 8❩, and “testtest”, respectively. The following declares a function in two varia-

bles:

f ≔ "x, y" ↦ "3⋅x + 5⋅y"

The Exponentiation Operator

To write very large and very small numbers, the exponentiation operator ↑ (inserted by Ctrl+R) is very

handy. The exponentiation operator is an infix operator, and a↑b is exactly equivalent to a⋅10^(b). For

instance, the rest mass of an electron is 9.10938215↑-31 and the mass of the sun is 1.9891↑30.

Base- Calculations

You can use the # infix operator to enter non-negative integers in any number base, such as binary (base

2), octal (base 8), and hexadecimal (base 16), rather than in decimal (base 10), as usual. The base- digits

used are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, …, X, Y, Z. Hence you can only work with bases less than or equal to

36. For example, 567#10, FF#16, 1000#2, 43HA2#20, and 43HA2#16 will return 567, 255, 8, 671002, and

the error message “The base-N digit H is not used in base 16”, respectively.

To write a given decimal number in base- notation, use the function toBaseN, which takes a non-

negative integer and a base as arguments. For instance, toBaseN(255, 16) will return “FF”.

Aborting a Slow Procedure

Some calculations take very long time to complete, of course. You can abort the current computation by

pressing the “Abort Computation” button. This will stop the current thread, so you can input a new com-

mand.

AlgoSim 2.0 User’s Guide

 13/110

The following screenshots illustrate how elementary calculations are performed in AlgoSim. Refer to the

Reference section of this document for the details regarding each used function.

AlgoSim 2.0 User’s Guide

14/110

AlgoSim 2.0 User’s Guide

 15/110

AlgoSim 2.0 User’s Guide

16/110

AlgoSim 2.0 User’s Guide

 17/110

AlgoSim 2.0 User’s Guide

18/110

AlgoSim 2.0 User’s Guide

 19/110

Automatic “Ans” Argument (AAA)

Some AlgoSim functions require no argument, such as date, time, and exit. But in AlgoSim, all functions

must be called with a list of arguments, to differentiate functions from variables. Hence – in principle – one

must add a dummy argument when calling such functions, as in

date(0)

However, this is a bit tedious. To overcome this problem, AlgoSim will automatically add the argument

“ans” to all “simple” (see “Technically” below) function calls lacking argument. Thus you may write simply

date

The fact that ans is added, and not (for instance) 0, also makes it possible to apply a function to the latest

output without adding any arguments at all, as in the following examples.

Technically, if the command entered in the console

 is a valid identifier, and

 is not equal to the identifier (name) of a previously declared variable,

then

 the string “(ans)” will be appended to the command, before it is executed by the kernel.

AlgoSim 2.0 User’s Guide

20/110

The Semicolon Operator

In AlgoSim, the semicolon is a binary infix operator that returns the last operand. For instance, “5; 6; 2; 3”

will return 3. This makes the operator ideal for evaluating several expressions on a single line. For in-

stance,

a ≔ 1; b ≔ 2; c ≔ 3

will assign three variables on a single line of code.

AlgoSim 2.0 User’s Guide

 21/110

Visualisation
The perhaps most important feature of AlgoSim is its advanced capabilities when it comes to visualisation

of data. In this section we will discuss all major approaches of two- and three-dimensional visualisation.

The general idea is first to create a set, and then draw it. This separation in two steps makes the visualisa-

tion capabilities much more powerful, as a set may be drawn using the same methods independently on

how the set was created.

2D graphs

A 2D graph is a set {() ℝ () } associated with a function in a domain . The graph

is created by createGraph and is drawn by, for instance, drawSet. For example,

graph ≔ createGraph("sin(x)", "x", [-10, 10, 0.001])

creates the graph of the function in where , -. Because a set (in the computer’s memory)

cannot contain an infinite number of points, we must specify the resolution of the points in , -. In

this case we choose 0.001 so that the domain becomes

{ -10, -9.999, -9.998, -9.997, -9.996, -9.995, -9.994, … }.

In general, when it comes to simple curves, 0.001 is a good resolution.

Now graph is the graph of the sine curve in this interval. This set can be drawn by

drawSet("graph")

To make things a bit more interesting, we can also draw the axes, by using drawAxes(0). We can also

write

drawSet("graph", "colour:red")

(instead of the line above) to let the graph be red. The result is shown in the screenshot below.

AlgoSim 2.0 User’s Guide

22/110

Notice that the coordinates of the cursor are shown in the orange panel. You can use the mouse (drag) to

move the plane and you can use the scroll wheel to zoom in or out, indefinitely. If you zoom in enough,

however, you will notice that the resolution 0.001 will become insufficient to make a solid curve. This can

be compensated by using a higher resolution, or by using drawLines instead of drawSet. drawLines

works exactly like drawSet, except that straight lines are drawn connecting the discrete points in the set.

In fact, it is good practice always to use drawLines instead of drawSet, because you then can lower the

resolution (and hence making the computation must less intensive), often without any noticeable effect.

2D parametrised curves

Of course not all 2D curves can be written in the form (). Rather, a general planar curve is the im-

age of a parametrisation function () (() ()) in a domain . In other words, the curve is

 (). In AlgoSim, the image of a set under a function is created by the extremely fundamental function

createImage. The output of this function is – of course – a set and may be rendered using either drawSet

or drawLines. As an example, let us draw the unit circle.

clearView(0)

circle ≔ createImage("❨sin(θ), cos(θ)❩", "θ", [0, 2⋅π, 0.001])

drawLines("circle")

A slightly more interesting example is the Euler spiral.

AlgoSim 2.0 User’s Guide

 23/110

clearView(0)

spiral ≔ createImage("❨FresnelC(t), FresnelS(t)❩", "t", [-10,

10, 0.02])

drawLines("spiral")

Coloured Sets

Now is the time to wonder if it is possible to create sets where each pixel has its own colour. This is very

straight-forward in AlgoSim: to create a planar, coloured, curve, simply create a set * () + instead of a

set * () + where is a colour code. To create a colour code, use the rgb or hsv functions, which take the

three RGB or HSV coordinates of the colour as arguments, respectively. Coloured sets are drawn with the

functions drawColouredSet and drawColouredLines, as one might expect.

For example, let us create a coloured sine curve, where the hue of the pixel colour is a function of the x-

coordinate:

sine ≔ createImage("❨x, sin(x), hsv(10⋅x, 1, 1)❩", "x", [-10,

10, 0.001]

drawColouredLines("sine")

AlgoSim 2.0 User’s Guide

24/110

Or why not draw a thick, coloured unit circle?

circle ≔ createImage("❨sin(θ), cos(θ), hsv(360⋅θ/(2⋅π)), 1, 1❩",

"θ", [0, 2⋅π, 0.01])

drawColouredLines("circle", "width:24")

That was fun.

AlgoSim 2.0 User’s Guide

 25/110

3D surfaces

A 3D graph is a set {() ℝ () () } associated with a function in a domain .

The graph is created by createGraph3 and is drawn by, for instance, drawSet3. For example,

sine ≔ createGraph3("sin(sqrt(x^2+y^2))", "x, y", [-10, 10,

0.1]^2)

drawAxes3(0)

drawSet3("sine")

Of course drawSet3 could also be instructed to use a specific colour, point size, etc, as in the two-

dimensional case with drawSet. Also, a more general surface can be obtained by createImage instead of

createGraph3.

As you can see, even though the surface contains 40 000 points (try

contents(sine)

AlgoSim 2.0 User’s Guide

26/110

to see this), it looks highly … “hollow”. But even worse, if we increase the number of points so that it will

become opaque at this magnification, the computation will not only take too long time to complete, but the

entire surface will become white! We will only see the silhouette of the surface. A much better approach is

to draw only the parameter curves of the surface. To this end, we change the domain from the filled

square , - in the parameter plane to a net. This is quite clever, isn’t it?

clearView3(0)

net ≔ createNet(-10, 10, 0.01, 1, -10, 10, 0.01, 1)

sine ≔ createGraph3("sin(sqrt(x^2+y^2))", "x, y", net)

drawAxes3(0)

drawSet3("sine")

The result looks much better, don’t you think?

But, as you might have noticed, it took quite some time to compute the surface. And no wonder:

contents(sine)

AlgoSim 2.0 User’s Guide

 27/110

returns “84042 real vector(s)”. The procedure would be much faster if we only computed the value of the

function at some points, and then connected the parameter curves with straight lines (cf. drawSet vs.

drawLines).

In AlgoSim, the way of drawing the parameter curves of a surface is to use the special functions create-

SurfParamCurves and drawSurfParamCurves. As an example:

clearView3(0)

sine ≔ createSurfParamCurves("❨x, y, sin(sqrt(x^2+y^2))❩", "x,

y", -10, 10, -10, 10)

drawAxes3(0)

drawSurfParamCurves("sine")

AlgoSim 2.0 User’s Guide

28/110

This looks really good, and it was fast. Of course, there are also functions drawColouredSet3 and draw-

ColouredSurfParamCurves. To use this, simply let create a set of four-dimensional vectors, the fourth

component being the colour code of each pixel.

clearView3(0)

sine ≔ createSurfParamCurves("❨x, y, sin(sqrt(x^2+y^2)),

hsv(180⋅sin(sqrt(x^2+y^2)), 1, 1)❩", "x, y", -10, 10,

-10, 10)

drawAxes3(0)

drawSurfParamCurves("sine")

As an example of a 3D surface that is not a graph, we give the Möbius strip.

clearView3(1)

Möbius ≔ createSurfParamCurves("5⋅❨(1 +

0.5⋅v⋅cos(0.5⋅u))⋅cos(u), (1 +

AlgoSim 2.0 User’s Guide

 29/110

0.5⋅v⋅cos(0.5⋅u))⋅sin(u), 0.5⋅v⋅sin(0.5⋅u)❩", "u, v",

0, 2⋅π, π/36, π/12, -1, 1.01, 0.05, 0.1)

drawSurfParamCurves("Möbius")

3D curves

3D curves are not graphs, of course. Hence a three-dimensional curve must be given by parametrisation,

i.e. the curve is the image of a one-dimensional domain under a three-dimensional, vector-valued, func-

tion. As an example, consider the circular helix.

clearView3(0)

helix ≔ createImage("❨4⋅cos(φ), 4⋅sin(φ), φ/2❩", "φ", [-50, 50,

0.01])

drawAxes3(0)

drawLines3("helix")

AlgoSim 2.0 User’s Guide

30/110

To make this a bit more interesting, we add some fuzz and colour.

clearView3(0)

helix ≔ createImage("❨4⋅cos(φ) + randomReal(1), 4⋅sin(φ) +

randomReal(1), φ/2 + randomReal(1), hsv(10⋅φ, 1,

1)❩", "φ", [-50, 50, 0.01])

drawAxes3(0)

drawColouredLines3("helix")

AlgoSim 2.0 User’s Guide

 31/110

Implicit Sets

Some sets cannot even be parametrised. But even so, AlgoSim is able to create them. Implicit plotting

means that you create a set of all points that satisfy a condition, usually an equation or inequality, in the

spatial coordinates. Say you want to plot

 *() ℝ r o h in()+

This set is not possible to parameterise using any functions of self-respect. But AlgoSim can use a brute-

force iteration over a given rectangle in ℝ and using a given resolution, to find points in . The function

we need is createSet. Let us try this.

clearView(0)

S ≔ createSet("arccoth(x⋅y) < sin(x+y)")

drawSet("S")

AlgoSim 2.0 User’s Guide

32/110

Non-Cartesian Coordinate Systems

AlgoSim can also visualise data using non-Cartesian coordinate systems. The procedure is rather simple.

First create a set of points in the coordinate system of your choice, for instance a set of points () in

polar coordinates. Then transform this set to the corresponding set of Cartesian coordinates, and then plot

it.

As an illustration, we can draw an Archimedean spiral 4 in plane polar coordinates.

clearView(0)

spiral ≔ createImage("❨ϕ/4, ϕ❩", "ϕ", [0, 8⋅π, 0.001])

spiral ≔ polarCoords(spiral)

drawAxes(0)

drawLines("spiral", "colour:orange")

AlgoSim 2.0 User’s Guide

 33/110

A slightly more appealing curve is the Butterfly curve

 o 4 in (

 4
, -)

Let us render it.

clearView(0)

set ≔ polarCoords(createImage("❨exp(sin(θ)) − 2⋅cos(4⋅θ) +

sin((2⋅θ − π)/24)^5, θ❩", "θ", [0, 100, 0.01]))

drawLines("set")

AlgoSim 2.0 User’s Guide

34/110

Thus, polarCoords takes care of planar polar coordinates. But we also have cylindricalCoords and

sphericalCoords that take care of three-dimensional cylindrical and spherical coordinates, respectively.

Hence, an easy way to draw a cylinder of radius 4 (say) is to create a part of the 4 plane in ()

space and then transform it to a cylinder in Cartesian () space, as illustrated below.

cylinder ≔ createImage("❨4, r_1, r_2❩", "r", [0, 2⋅π, 0.1]×[-5,

5, 0.1])

cylinder ≔ cylindricalCoords(cylinder)

drawSet3("cylinder")

Complex Visualisation

Visualisation in ℂ is done by creating a set in ℂ and then use complexCoords to transform the set to ℝ .

As an example of this procedure, we will use a conformal mapping, more precisely a Möbius mapping.

First we create an interesting set in ℂ. Let us create a few circles and a line.

AlgoSim 2.0 User’s Guide

 35/110

circle1 ≔ createImage("4 + 2⋅i + exp(i⋅φ)", "φ", [0, 2⋅π,

0.001])

circle2 ≔ createImage("-3 − 5⋅i + 2⋅exp(i⋅φ)", "φ", [0, 2⋅π,

0.001])

circle3 ≔ createImage("4⋅exp(i⋅φ)", "φ", [0, 2⋅π, 0.001])

line ≔ createImage("1−2⋅i + t⋅(1+i)", "t", [-10, 10, 0.001])

set ≔ circle1 ∪ circle2 ∪ circle3 ∪ line

Now we want to see how the set looks. To this end we write

clearView(0)

setR2 ≔ complexCoords(set)

drawAxes(0)

drawSet("setR2")

We consider the Möbius transformation

and implement it as

AlgoSim 2.0 User’s Guide

36/110

Möbius ≔ "z" ↦ "(2⋅z + i)/(i⋅z − 3 + i)"

Now we transform set.

image ≔ createImage("Möbius(z)", "z", set)

Finally we look at the result.

imageR2 ≔ complexCoords(image)

drawSet("imageR2", "colour:red")

As we would expect, the four ℂ̂-circles are mapped to four other ℂ̂-circles (although one of the circles is

very small, near the point). In fact you can easily determine which circle the straight line was mapped

to. (How?)

Coloured Planes

We end this chapter by describing an alternative to 3D graphs (). Instead of such a graph, may

be visualised by colouring each pixel () according to the value () at that pixel. To accomplish this

we only need to find a mapping from () to a colour code, but this we have done before. The relevant

AlgoSim functions are createColouredPlane and drawColouredPlane. To illustrate these, we will con-

sider the problem of superposition of two idealised, circular water waves. Mathematically the waves are

AlgoSim 2.0 User’s Guide

 37/110

ψ ≔ "r" ↦ "sin(4⋅norm(❨2, 2❩ − r))/6"

Φ ≔ "r" ↦ "sin(4⋅norm(❨0, 0❩ − r))/6"

and the superposition is

S ≔ "r" ↦ "ψ(r) + Φ(r)"

We could visualise this using a graph; to compare the two methods, we will do this as well. Hence we type

set ≔ createSurfParamCurves("❨x, y, S(❨x, y❩), hsv(90 −

270⋅S(❨x, y❩), 1, 1)❩", "x, y", -10, 10, -10, 10)

drawColouredSurfParamCurves("set")

We now try to produce a coloured plane instead.

AlgoSim 2.0 User’s Guide

38/110

set2 ≔ createColouredPlane("hsv(90 − 270⋅S(❨x, y❩), 1, 1)", -10,

10, 0.1, -10, 10, 0.1)

drawColouredPlane("set2")

The Beauty of the Two-Step Approach

By now the reader is acquainted with the way visualisation is performed in AlgoSim: one first creates a

set, and then one draws it. One of the major benefits of this two-step approach is that we can create a set,

and then transform it using whatever algorithm we want, and then draw the result, in precisely the same

way as if we had not transformed the set at all. We will now give a couple of examples of this.

First: let us draw a sine curve in space.

sine ≔ createImage("❨x, 0, 3⋅sin(x)❩", "x", [-10, 10, 0.001])

This is a sine curve in the plane . Assume we want to rotate the curve, so it is contained in the plane

 instead. This is done by applying the linear transformation

AlgoSim 2.0 User’s Guide

 39/110

 (

 √ ⁄ √ ⁄

 √ ⁄ √ ⁄

)

And so we do:

A ≔ ❨❨1, 0,0❩, ❨0, 1/sqrt(2), -1/sqrt(2)❩, ❨0, 1/sqrt(2),

1/sqrt(2)❩❩

sine2 ≔ createImage("A⋅v", "v", sine)

defView3(0)

drawLines3("sine2")

As our second example, we consider the orthogonal projection

 (

)

AlgoSim 2.0 User’s Guide

40/110

We will draw a few spheres and then project them:

paramNet ≔ createNet(0, π, 0.001, π/6, 0, 2⋅π, 0.001, π/6)

sphere ≔ "r, θ, φ" ↦ "❨r⋅sin(θ)⋅cos(φ), r⋅sin(θ)⋅sin(φ),

r⋅cos(θ)❩"

S1 ≔ createImage("sphere(2, r_1, r_2) + ❨3, 3, 3❩", "r",

paramNet)

S2 ≔ createImage("sphere(3, r_1, r_2) + ❨1, -4, 4.3❩", "r",

paramNet)

S3 ≔ createImage("sphere(1, r_1, r_2) + ❨6, 6, 3❩", "r",

paramNet)

spheres ≔ S1 ∪ S2 ∪ S3

shadows ≔ createImage("A⋅v", "v", spheres)

defView3(0)

drawSet3("spheres")

drawSet3("shadows", "colour:grey")

AlgoSim 2.0 User’s Guide

 41/110

Final Words on Visualisation

As you have seen in the examples, clearView(0) is used to remove all drawings from the 2D visualisation

window, and clearView3(0) does the same on the 3D visualisation window. Slightly more sophisticated is

defView(0) that first clears the 2D visualisation window, and then resets its initial range (i.e. , -)

and draws the axes. defView3(0) does the same thing on the 3D visualisation window. Yet another useful

function is undo(0) which removes the most recently added object in the 2D window, and – of course –

there is an undo3(0) function as well. You might also be interested in the removeDrawing, re-

moveDrawing3, redraw, and redraw3 functions. Please see the reference section in this document for

their full documentation.

By now you might be wondering how you can export an image rendered in AlgoSim. Actually, you should

be wondering! After all, what fun is there to produce magnificent artwork, if you cannot share it? (Well, it

is fun, but it is even more fun to share.) If you want to save the current 2D visualisation image, simply

write

saveViewAsBitmap(fn)

where “fn” is the file name of the output. You can save images in the 24-bit Windows Bitmap (BMP), Port-

able Network Graphics (PNG), and AlgoSim Pixmap (ASD) formats. In almost all cases, PNG is the best

format, for PNG uses a highly efficient, but lossless, compression, and is supported on all computer plat-

forms. The image is saved in the format indicated by the file suffix (*.bmp, *.png, or *.asd, respectively).

For instance,

saveViewAsBitmap("C:\Users\Andreas Rejbrand\Pictures\image.png")

If you want to use a Windows “Save As” dialog box instead of entering the file name in the console, use

saveViewAsBitmap(fileSaveDialog(1))

The resulting image will have the width and height of the 2D visualisation window. Because

BMP/PNG/ASD is a raster graphics format (not vector graphics), you will not be able to scale the image.

To resolve this, at least to some degree, you can specify the width and height of the output bitmap image:

saveViewAsBitmap(fn, width, height)

as in

saveViewAsBitmap("C:\Users\Andreas Rejbrand\Pictures\image.png",

1680, 1680)

To save the current 3D image, simply use saveViewAsBitmap3 instead of saveViewAsBitmap; these func-

tions work exactly the same.

You might also want to get an AlgoSim pixmap object with the image of the 2D/3D visualisation window.

To get such an object, use getViewAsBitmap(0) or getViewAsBitmap(w, h) in the 2D case, and

getViewAsBitmap3(0) or getViewAsBitmap3(w, h) in the 3D case. An algosim pixmap may be saved as

a BMP file by means of savePixmapToFile(fn).

This concludes the chapter on graphical visualisation.

AlgoSim 2.0 User’s Guide

42/110

Physical Simulations
In AlgoSim, it is possible to specify a vector field, and simulate particle motion in it. There are two ways to

do this:

 A force-field. The acceleration of the particle is a function of its spatial position.

 A flow. The velocity of the particle is a function of its spatial position.

Force Fields

We begin to investigate force-fields. First of all, it might be nice to be able to visualise the field itself. This

is done by plotting vectors at a discrete grid of points. Formally, a vector field in dimensions is a set of

 -dimensional vectors, the first components of each is the vector’s position, the last components

being the vector itself. For instance, if the value of the vector field is () at the point () ℝ , then the

vector () is one of the members of the vector field set. Vector fields are created by createVector-

Field and drawn by drawVectorField.

We use a simple constant vector field as a first example; you might think of it as gravity or the electric field

between two planar conductors hold at different voltages.

vfield ≔ createVectorField("❨0, -1❩", "x, y", [-10, 10]^2)

drawVectorField("vfield", "colour:#333333")

Let us now simulate a ball in this field. The relevant function is computeParticleTrajectory. It takes the

initial position and velocity of the ball as arguments, as well as the initial and final times, and the temporal

resolution of the numerical integration. As an example,

traj ≔ computeParticleTrajectory("❨0, -1❩", "r", ❨-8, 8❩, ❨1,

0❩, 0, 100, 0.001)

drawSet("traj")

would draw the trajectory. However, to make things a bit more interesting, we can make the ball bounce

when it hits the edges of the visualisation window, i.e. the box , - . We choose to let the ball retain

80 % of its speed1 at each bounce.

undo(0)

traj ≔ computeParticleTrajectory("❨0, -1❩", "r", ❨-8, 8❩, ❨1,

0❩, 0, 100, 0.001, ❨-10, 10, -10, 10❩, 0.8)

drawSet("traj")

The output of this is shown below.

1 Hence the ball retains 64 % of its kinetic energy.

AlgoSim 2.0 User’s Guide

 43/110

We can also animate the motion of the ball.

animateTrajectory("traj", 70, false)

The second argument is the speed of the animations (steps per frame), while the third argument will make

the ball leave a trace if set to true. Unfortunately, however, due to technical limitations in the contempo-

rary art of printing, I am not able to display the animation on this page.

Flows

Flows work the same way as force-fields. The only exception is the integration: in a flow, the velocity of the

particle is a function of its position. The new function computeFlowTrajectory replaces computeParti-

cleTrajectory. Of course, computeFlowTrajectory will not need an initial velocity. As an example, we con-

sider a model of an oscillating chemical reaction. The - and -axes are the concentrations of the two ma-

jor compounds.

a ≔ 2

b ≔ 3.001

AlgoSim 2.0 User’s Guide

44/110

clearView(1)

setView(-1/3, 4.5, -1/3, 4.5)

vectorField ≔ createVectorField("❨1 + a⋅x^2⋅y − b⋅x−x, -a⋅x^2⋅y

+ b⋅x❩", "x, y", [0, 10, 0.25]^2)

drawVectorField("vectorField", "colour:#333333")

drawAxes(1)

flow ≔ computeFlowTrajectory("❨1 + a⋅r_1^2⋅r_2 − b⋅r_1 − r_1, -

a⋅r_1^2⋅r_2 + b⋅r_1❩", "r", ❨1, 4❩, 0, 100, 0.01)

drawLines("flow", "colour:gold")

Of course this trajectory can be animated as well. (Try to play with and .)

AlgoSim 2.0 User’s Guide

 45/110

Auditory Visualisation
In AlgoSim, you can also visualise data by means of waveform audio. AlgoSim can import and export WAV

PCM files (*.wav), and send waveform data to the computer’s speakers. A sound is implemented as an own

data type, but to create and edit waveform audio, column matrices are used. Hence you have to convert

between column matrices and sounds. sndMatrixToSound takes one column matrix and a sample rate,

and return a sound object. sndGetSamples, on the other hand, takes a sound and returns the column ma-

trix. As a first example, we generate a 2 s 400 Hz sine tone with a sampling frequency of 4 000 Hz.

ν ≔ 400

ω ≔ 2⋅π⋅ν

A ≔ 2^31

snd ≔ createImage("A⋅sin(ω⋅t)", "t", [0, 2, 1/4000])

snd ≔ sndMatrixToSound(setToMat(snd), 4000)

A more interesting example:

ν ≔ 400

ω ≔ 2⋅π⋅ν

A ≔ 2^31

snd ≔ createImage("A⋅sin(ω⋅(sin(t)⋅t))", "t", [0, 4⋅π, 1/10000])

snd ≔ sndMatrixToSound(setToMat(snd), 10000)

A faster way of creating a pure sine tone is to use the createSineTone function. The tone above may for

instance be created by

createSineTone(400, 2)

This way it is very easy to study, for instance, beat. Try

s1 ≔ createSineTone(400, 2)

s2 ≔ createSineTone(401, 2)

s ≔ sndSuperpose(s1, s2)

where the function of sndSuperpose ought to be obvious.

MIDI Functions

You can produce MIDI sounds, i.e. the sounds of 128 pre-defined musical instruments. This is very fun. To

play a note, use note. The first argument is an integer in , - and defines the note (~the frequency) of

the note, while the second (optional) argument, also an integer in the same interval, determines the veloc-

ity (the volume, the intensity of the sound produced by the speakers). For some instruments, e.g. piano,

this produce a tone with a small duration in time. Some instruments, however, will continue to produce

the tone until you send the command noteOff using the same arguments. To set the instrument, use

changeInstrument, the first argument of which – yes, that’s right – is an integer in , -. The default

instrument, with identification 0, is “Grand Acoustic Piano”. notes plays a set of notes.

Try these functions! For instance, try

note(70)

AlgoSim 2.0 User’s Guide

46/110

Some More Functions in Focus
So far we have only come across a few of the almost 500 functions built into AlgoSim. Here we let a few

more functions glance in the spotlight. For full details on each function, see the reference section.

Real and Complex Numbers

The functions isPrime, nextPrime, prevPrime, Fibonacci, coprime, ceil, floor, round, trunc, frac, to-

tient, mod, divisors etc. do exactly what one would expect. Notice that the ceil and floor of a number

also may be written ⌈ ⌉ and ⌊ ⌋, respectively. Hence, technically speaking, ⌈⌉ and ⌊⌋ are defined as circum-

fix operators. There is also an infix operator for coprime: returns true iff and are relatively

prime. is -factorial, so that is a postfix operator. % nd ‰ re po fix oper or wi h he obviou

functions, i.e. and , respectively. mod(a, b) adds or subtracts an integral number of

 ’ from , so that the result lies within , ,. | returns true if divides , and false otherwise. divisors

returns the vector of divisors of the argument.

The Iverson bracket notation [expr] is also very handy. [expr] returns 1 if expr is true, and 0 otherwise.

Observe that both the Kronecker delta function and the rectangular function are special cases of the Iver-

son bracket, corresponding to the expressions “x=y” and “x>-1/2 ∧ x<1/2”, respectively.

When it comes to elementary functions, AlgoSim got them all. sin, cos, tan, cot, sec, csc, arcsin, arccos,

arctan, arccot, arcsec, arccsc, sinh, cosh, tanh, coth, sech, csch, arcsinh, arccosh, arctanh, arccoth, arcsech,

arccsch, exp, ln, and sqrt are all defined for both real and complex arguments.

For complex numbers, arg and abs return the argument and the modulus. All complex functions use the

principal branch of the argument, i.e. rg - - ℂ.

If is a function and is a set, it is not possible to compute the image of under by writing (). [In-

deed, there are functions that really take a set as an argument, so it would be inconsistent to use this syn-

tax.] But as we have seen, we can use cre eIm ge(“f(x)” “x” S)

Special functions include integrals such as erf (Error Function), erfc (Complementary Error Function), Ci

(Cosine Integral), Si (Sine Integral), FresnelC (Fresnel Cosine Integral), FresnelS (Fresnel Sine Integral),

and polynomials such as hermiteProb, hermitePhys, and Bernstein. We also have harmonicNumber, gam-

maFunction, and bessel.

diffGraph and intGraph take a graph *() ℝ ()+ as argument, and returns the graph of the

derivative or integral, respectively.

Vectors and Matrices

When it comes to vectors, the functions norm, taxiNorm, maxNorm, pNorm, absVect, max, min, sum,

mean, product, angle, and sort are available.

The functions identityMatrix and zeroMatrix return the identity matrix of size and the zero matrix of

size , respectively. fillMatrix returns a matrix with all entries set to a constant. computeMa-

trix returns a matrix where the element () is () for some function . This is a rather powerful

function. For example,

computeMatrix(12, 12, "m⋅n", "m, n")

returns the 12 by 12 multiplication table

AlgoSim 2.0 User’s Guide

 47/110

⎛ 1 2 3 4 5 6 7 8 9 10 11 12 ⎞
⎜ 2 4 6 8 10 12 14 16 18 20 22 24 ⎟
⎜ 3 6 9 12 15 18 21 24 27 30 33 36 ⎟
⎜ 4 8 12 16 20 24 28 32 36 40 44 48 ⎟
⎜ 5 10 15 20 25 30 35 40 45 50 55 60 ⎟
⎜ 6 12 18 24 30 36 42 48 54 60 66 72 ⎟
⎜ 7 14 21 28 35 42 49 56 63 70 77 84 ⎟
⎜ 8 16 24 32 40 48 56 64 72 80 88 96 ⎟
⎜ 9 18 27 36 45 54 63 72 81 90 99 108 ⎟
⎜ 10 20 30 40 50 60 70 80 90 100 110 120 ⎟
⎜ 11 22 33 44 55 66 77 88 99 110 121 132 ⎟
⎝ 12 24 36 48 60 72 84 96 108 120 132 144 ⎠

We can also obtain a list of prime numbers:

computeMatrix(1, 12, "prime(n)", "m, n")

❨ 2 3 5 7 11 13 17 19 23 29 31 37 ❩

We can even create a numbered table of primes:

computeMatrix(2, 12, "ifThen(m=1, n, prime(n))", "m, n")

⎛ 1 2 3 4 5 6 7 8 9 10 11 12 ⎞
⎝ 2 3 5 7 11 13 17 19 23 29 31 37 ⎠

We have already seen toEchelonForm and sysSolve. Other convenient functions include rank, rowScale,

rowMove, rowAddMul, matRows (the number of), getRow, matCols (the number of), and getCol.

If is a vector, then A_i returns the th component of . If is a matrix, then A_ ❨i, j❩ returns the i, j ele-

ment of the matrix. Technically, _ is an infix operator that takes two arguments, either a vector and a real

number, or a matrix and a vector, and returns a number.

Texts (strings)

String functions include length, substring, strSplit, strPos, strLeft, strRight, strBeginsWith,

strEndsWith, strContains, strReplaceAll, txtPos, txtBeginsWith, txtEndsWith, txtContains, and

txtReplaceAll. In general, the str* functions are case-sensitive, whereas the txt* functions are not.

When it comes to ciphers and encryption, we have ROT13, CaesarCipher, VigenèreEncrypt, and

VigenèreDecrypt. RO13 is a simple involution, and the inverse of str CaesarCipher(str, n) is str Caes-

arCipher(str, -n) where , - ∩ . But a text encrypted using the Vigenère algorithm, which uses a pass-

word, or key, to encrypt and decrypt the text, is a bit harder to crack without knowledge of the key. For fun, I

challenge you to crack the following message (I hope no one succeeds):

ggwormlmfmnuperdwetxwcwuucjtqyv

Pixmaps

Pixmap (bitmap) functions include pmInvert, pmToBitmap, pmFlipV, pmFlipH, pmRot90P,

pmRot90N, pmRotateEx, pmRotate, pmShear, pmScale, pmToGreyscale, pmFixHue, pmToMono-

chromatic, pmPixelate, pmTransform, pmMöbius, pmGetRect, pmHeight, pmWidth, pmGetRAMSize,

pmShiftHue, pmResize, pmAddSizeToEdges, pmRemoveSizeFromEdges, pmBlend, pmContrast,

pmInvertValue, pmInvertLightness, pmSwapBW, pmReplaceColour, pmRGBAdjustment, pmHSVAd-

justment and many others, as well as loadPixmapFromFile and savePixmapToFile.

AlgoSim 2.0 User’s Guide

48/110

Below is pmMöbius exemplified. A picture of a dog, a floorball ball and a red, vertical, bar in the grass is

transformed using the standard Möbius transformation () ()⁄ . In the middle you see four

circles, the inside of which are missing. These circles are the images of the four edges of the original image,

the outside of which – of course – is undefined.

Sounds and MIDI Functions

Have a look at sndSuperpose, sndMakeMultichannel, sndSplitChannels, sndGetSampleRate,

sndGetNumChannels, sndAppend, reduceSound and sndGetNumSamples. There is also changeMidi-

Volume and sendMidiMsg (for low-level interaction with the computer’s sound card).

More

In the reference section, you will find all functions in AlgoSim. Have a look at them!

AlgoSim 2.0 User’s Guide

 49/110

The Operator Table
By now you know there are many operators you can use in AlgoSim. Examples include

 Unary operators

o Prefix operators: ¬, -, …

o Postfix operators: !, %, *, …

 Binary operators

o Infix operators: +, −, ⋅, ×, ^, , |, …

 -ary operators

o Circumfix operators: [, , …], {, , …}, ❨, , …❩, ⌊, , …⌋

One of the truly original features of AlgoSim is that no operators are hard-coded, i.e. the end-user is able to

define new operators (prefix, postfix, infix, and circumfix) and remove, or redefine, existing operators.

Given a Windows user, there are two operator tables, one in the AlgoSim subdirectory of the Program

Files folder, common to all users, and one in the local user’s AppData folder. Typical paths may be

 C:\Program Files (x86)\AlgoSim\ops.asd

 C:\Users\Andreas Rejbrand\AppData\Local\Rejbrand\AlgoSim\2.0\ops.asd

If the local file exists, it will be used, and the common will be ignored. If not, the common file will be used.

Thus, to restore the operator table to it’s default appearance, simply copy the common ops.asd to the local

directory. This can in fact be done automatically from inside AlgoSim itself, by means of the restoreOper-

atorTable program. This will copy the common file to the local directory (overwriting any existing file

there), and then call the kernel function reloadOperatorTable, which will cause AlgoSim to reload the

operator table.

So, you can alter the (local) operator table to any degree you like. Simply double-click ops.asd to open it in

the AlgoSim Data viewer (and editor), make your changes, and save the result. Then call reloadOpera-

torTable to reload the table, if you edited the file during an AlgoSim session.

Each row in the table corresponds to one operator, and the columns are

type | c1 | c2 | fname | lr | rr | rtl.

type is either “prefix”, “postfix”, “infix”, or “circumfix”. For prefix, postfix, and infix operators, c1 is the

operator symbol, a Unicode character, but not an alphanumerical one. For a circumfix operator, c1 and c2

are the initial and final operator symbols, which must be different. fname is the name of the function that

the operator calls. It must accept the right number of arguments (the number of the operands), of course.

If lr is -1 (rather than 0), the left operand (if any) will be raw, i.e. converted to a string before it is sent to

the function named fname. rr means “right operand is raw”. For instance, the assignment operator ≔ is

raw to the left, so you can write a ≔ 5 rather than “a” ≔ 5 (why?). “rtl” means that the operators with the

same level of precedence will be read from the right to the left, as suitable for ≔ and ^. However, the cur-

rent implementation ignores this option, so that all operators will be read from the left to the right, re-

gardless of this setting.

Defining your own operators might be extremely useful in many situations.

AlgoSim 2.0 User’s Guide

50/110

Programming
You can write simple programs in AlgoSim. If you create a program called MyProgram, you can call it al-

most like an ordinary function. If your program requires no arguments, you simply write MyProgram(0).

But what if it does require arguments? Well, no semantics for this is implemented. However, this is not a

major problem. Indeed, the value in place of the argument to MyProgram is never used, so you can assign

variables here. For instance you might write MyProgram(a ≔ 2, b ≔ 5). This will assign the value 2 to a,

and 5 to b, before executing MyProgram. The only drawback is that there – obviously – is no such thing as

“local variables”. An AlgoSim program may return nothing (which will be translated to 0), or a value of any

data type, as is the case of ordinary functions. Hence you can write a program (or a function) that inputs a

table and returns a pixmap. Or a function that inputs a sound, and returns a string. Or whatever.

Basically, an AlgoSim program is simply a number of console input lines. But there are also flow control

structures, such as if conditionals and repeat loops. Such commands are always preceded by a semicolon.

The If Conditional

The structure of a simple if construct is

;if <expr logical value>

command1

command2

commandN

;endIf

This construct works as in most programming and scripting languages. When the program interpreter

encounters the if line, it will evaluate the expression on this line. If it evaluates to true, the contents of the

if block will be executed. If it evaluates to false, the program interpreter will skip the entire if block and

continue execution of the program on the next line after endIf.

 The if construct supports an else block, and the syntax is

;if <expr logical value>

command1

command2

commandN

;else

command1b

command2b

commandNb

;endIf

The most general conditional is

;if <expr logical value>

;elseIf <expr logical value>

;elseIf <expr logical value>

AlgoSim 2.0 User’s Guide

 51/110

;else

;endIf

with an arbitrary number of elseIf statements. Exactly one of the blocks (denoted by vertical ellipsis) will

be executed, namely the one after the first <expr logical value> that evaluates to true; if non of them does,

the code under else will execute. If there is no else block, nothing will execute.

All indentation is optional, yet recommended. The advice is to use four (4) spaces as indent. The flow

commands ;cmd (such as if, elseIf, else, and endIf) are all case-insensitive; thus, all of the following

statements are identical:

;elseIf

;elseif

;ELSEIF

;elseIF

The first variant is recommended, though.

The Repeat Loop

The most basic loop is

;repeat

 <commands>

;indefinitely

When execution hits the indefinitely line, it will jump back to repeat. Hence <commands> will be repeat-

ed indefinitely. To exit such a loop, use the break command.

;repeat

 <commands>

 ;break

 <commands>

;indefinitely

The break command will continue execution of the program on the line immediately below indefinitely.

The continue command will jump directly to the next iteration, skipping all that remains in the current

iteration. That is, when the program interpreter encounters a continue statement, it will jump to the in-

definitely line, and then go back to repeat, as expected.

For example: to print all numbers 1, 2, …, 10, write

n ≔ 1

;repeat

 print(n)

 n ≔ n + 1

 ;if n > 10

 ;break

 ;endIf

;indefinitely

AlgoSim 2.0 User’s Guide

52/110

A variant of the repeat loop is

;repeat

 <commands>

;until <expr logical value>

This will perform <commands>, and then check <expr logical value>. If this evaluates to false, the repeat

block will execute once more. If it evaluates to true, the loop will break, i.e. execution will continue on the

next line after the until statement. Hence the above is equivalent to

;repeat

 <commands>

 ;if <expr logical value>

 ;break

 ;endif

;indefinitely

The above example can thus be written more elegantly

n ≔ 1

;repeat

 print(n)

 n ≔ n + 1

;until n > 10

The final variant is

;repeat

 <commands>

;while <expr logical value>

which will repeat <commands> as long as <expr logical value> is true. Hence the above is equivalent to

;repeat

 <commands>

;until ¬ <expr logical value>

and also

;repeat

 <commands>

 ;if ¬ <expr logical value>

 ;break

 ;endif

;indefinitely

Hence our example can be written

AlgoSim 2.0 User’s Guide

 53/110

n ≔ 1

;repeat

 print(n)

 n ≔ n + 1

;while n ≤ 10

The DoWhile Loop

The repeat … until and repeat … while loops check the <expr logical value> at the end of each iteration.

The DoWhile loop does the opposite:

;doWhile <expr logical value>

 <commands>

;stop

will begin with checking <expr logical value>. If this evaluates to true, execution continues on the next line.

When execution hits stop, the program will jump back to doWhile and check <expr logical value> again. If

<expr logical value> should evaluate to false, execution will continue on the first line after stop. Hence the

above is equivalent to

;repeat

 ;if ¬ <expr logical value>

 ;break

 ;endif

 <commands>

;indefinitely

Compare this with the repeat … while loop above. Of course, break and continue can be used in

doWhile loops as well as in any kind of the repeat loop.

The For Loop

The AlgoSim for works as in most languages, but is slightly more powerful. The syntax is show below.

;for <init>; <each but first>

 <commands>

;stop

This is equivalent to

<init>

<commands>

;repeat

 ;if ¬ <each but first>

 ;break

 ;endif

 <commands>

;indefinitely

Now, recall The Semicolon Operator on page 20. Using this, we can write our example in the very concise

form

AlgoSim 2.0 User’s Guide

54/110

;for x ≔ 1; x ≔ x + 1; x ≤ 10

 print(x)

;stop

which works as for loops usually work. Please notice that the first semicolon (after x ≔ 0) is part of the

for flow command syntax, whereas the second semicolon (after x ≔ x + 1) is a semicolon operator. The

command x ≔ x + 1; x ≤ 10 will thus execute at each iteration (but the first), and will return true if and

only if x ≤ 10. Of course, break and continue statements are perfectly valid in for loops.

The Iterate Loop

The iterate loop is a very powerful extension of the for loop to several variables. Per definition,

;iterate x:a:b:c, y:α:β:γ, …

 <commands>

;endIterate

is exactly equivalent to

;for x ≔ a; x ≔ x + c; x ≤ b

 ;for y ≔ α; y ≔ y + γ; y ≤ β

 …

 <commands>

 …

 ;stop

;stop

If the step sizes (c, γ, …) are not specified (i.e. ;iterate x:a:b, y:α:β, …), then they are assumed to be equal to

unity.

For instance, the sample program gitter.prg, that draws a simple cubic lattice (of atoms or ions, for in-

stance), is implemented as

clearView3(1)

beginDrawing(1)

setLight(true)

;iterate x:-3:3, y:-3:3, z:-3:3

 drawSphere(2⋅❨x, y, z❩, 1/5, "slices:16; loops:16")

;endIterate

endDrawing(1)

redraw3(1)

Entering Programs

An AlgoSim program is a UTF-8-encoded plain text file with the suffix “.prg”. You can use the editor of your

choice to write programs, but preferably one with support for AlgoSim syntax highlighting, such as Re-

jbrand Text Editor. To make programs available to AlgoSim, you must save them in a directory that Al-

goSim looks in. On a given computer (and in a given user account), there are generally two such directo-

ries: one common to all users of the computer, and one specific to the current user. On a typical Windows

7 system, the two directories are

AlgoSim 2.0 User’s Guide

 55/110

C:\Program Files (x86)\AlgoSim\programs

and

C:\Users\<User Name>\AppData\Local\Rejbrand\AlgoSim\2.0\programs,

respectively. To find out the exact directories on your computer, enter the command getProgramLoca-

tions(0). The programs in these two directories are loaded and interpreted automatically when AlgoSim

starts. If you alter any program while AlgoSim is running, you must tell AlgoSim to reinterpret the pro-

gram before you can use the new version of it. This is done by the reloadPrograms(0) command.

A Few Examples

The simplest programs are those that do not contain any flow control constructs. For instance,

Möbius.prg

clearView3(1)

Möbius ≔ createSurfParamCurves("5⋅❨(1 +

0.5⋅v⋅cos(0.5⋅u))⋅cos(u), (1 +

0.5⋅v⋅cos(0.5⋅u))⋅sin(u), 0.5⋅v⋅sin(0.5⋅u)❩", "u, v",

0, 2⋅π, π/36, π/12, -1, 1.01, 0.05, 0.1)

drawSurfParamCurves("Möbius")

might be a handy program for drawing a Möbius strip.

A slightly more complicated program can solve the Monty Hall problem for us.

doors.prg

;; Three Doors (probability paradox)

N ≔ 10000

nCarsStay ≔ 0

nCarsSwap ≔ 0

;; Simulate "stay" scenario

;for j ≔ 1; j ≔ j + 1; j ≤ N

 rightDoor ≔ randomInt(3)

 guess ≔ randomInt(3)

 ;if rightDoor = guess

 nCarsStay ≔ nCarsStay + 1

 ;endif

;stop

;; Simulate "change door" scenario

;for j ≔ 1; j ≔ j + 1; j ≤ N

 rightDoor ≔ randomInt(3)

 guess ≔ randomInt(3)

 ;; Pick one wrong, unchosen door

 wrongDoor ≔ 0

 ;doWhile wrongDoor ∈ {guess, rightDoor}

 wrongDoor ≔ mod(wrongDoor + 1, 3)

 ;stop

AlgoSim 2.0 User’s Guide

56/110

 ;; Change door

 newDoor ≔ 0

 ;doWhile newDoor ∈ {guess, wrongDoor}

 newDoor ≔ mod(newDoor + 1, 3)

 ;stop

 ;if rightDoor = newDoor

 nCarsSwap ≔ nCarsSwap + 1

 ;endif

;stop

result ≔ "Stay: " + toString(nCarsStay / N) + " Change: " +

toString(nCarsSwap / N)

delete("rightDoor")

delete("guess")

delete("wrongDoor")

delete("newDoor")

delete("j")

delete("N")

delete("nCarsStay")

delete("nCarsSwap")

;return result

The output of this program might look like

Stay: 0.3291 Change: 0.6703

A more interactive example is the wave superposition simulator.

waveSim.prg

;; Wave simulator

setView(-10, 10, -10, 10)

int ≔ [-10, 10, 0.1]

;; Arguments: λ1, λ2, ν1, ν2, A1, A2, δ

λ1 ≔ 3

λ2 ≔ 4

ν1 ≔ 0.6

ν2 ≔ 0.4

A1 ≔ 2

A2 ≔ 2.3

δ ≔ 0

inputParams("λ1", "λ2", "ν1", "ν2", "A1", "A2", "δ")

k1 ≔ 2⋅π/λ1

AlgoSim 2.0 User’s Guide

 57/110

k2 ≔ 2⋅π/λ2

ω1 ≔ 2⋅π⋅ν1

ω2 ≔ 2⋅π⋅ν2

clearView(1)

drawLines("wave1")

drawLines("wave2")

drawLines("waveΣ", "colour:red")

waveFunction1 ≔ "x, t" ↦ "A1 ⋅ sin(k1⋅x − ω1⋅t)"

waveFunction2 ≔ "x, t" ↦ "A2 ⋅ sin(k2⋅x − ω2⋅t + δ)"

t ≔ 0

tc ≔ getTickCount(1)

;repeat

 wave1 ≔ createGraph("waveFunction1(x, t) + 5", "x", int)

 wave2 ≔ createGraph("waveFunction2(x, t)", "x", int)

 waveΣ ≔ createGraph("waveFunction1(x, t) + waveFunction2(x,

t) − 5", "x", int)

 redraw(1)

 t ≔ t + (getTickCount(1) − tc) / 1000

 tc ≔ getTickCount(1)

;indefinitely

delete("λ1")

delete("λ2")

delete("ν1")

delete("ν2")

delete("A1")

delete("A2")

delete("k1")

delete("k2")

delete("ω1")

delete("ω2")

delete("δ")

delete("doStopWaves")

delete("t")

delete("tc")

delete("wave1")

delete("wave2")

delete("waveΣ")

delete("int")

AlgoSim 2.0 User’s Guide

58/110

Using this program, the user can choose the parameters (wavelength, frequency, amplitude, and initial

phase) of two sine waves, and then the program displays the two waves propagating in real-time, together

with their superposition. Using this application, one can study wave phenomena such as construc-

tive/destructive interference, beat, and standing waves.

Our next example makes use of the computeParticleTrajectory function to visualise Rutherford scatter-

ing of α particles on gold atoms, for example.

rutherfordScattering2.prg

clearView(0)

drawCircle(❨0, 0❩, 0.1, "colour:white; border−colour:white")

αtraj ≔ ∅

drawSet("αtraj", "colour:red")

;iterate impactParameter:-8:8

 αtraj ≔ αtraj ∪ computeParticleTrajectory("1/norm(r)^3 ⋅ r",

"r", ❨-10, -impactParameter❩, ❨1, 0❩, 0, 100, 0.005)

 redraw(0)

AlgoSim 2.0 User’s Guide

 59/110

;enditerate

As our final example, we choose the very nice mirror simulator.

mirrorSim.prg

;; Mirror simulator

;if ¬identExists("t")

 t ≔ choiceDialog("parabolic", "circular", "convex

parabolic", "sine", "line")

;endif

;if t ∉ {"parabolic", "circular", "convex parabolic", "sine",

"line"}

 t ≔ choiceDialog("parabolic", "circular", "convex

parabolic", "sine", "line")

;endif

xmin ≔ -20

setView(xmin, 1, -10, 10)

clearView(1)

;if t = "parabolic"

 mirrorFunction ≔ "y" ↦ "-(y^2) / 40"

;elseIf t = "circular"

AlgoSim 2.0 User’s Guide

60/110

 mirrorFunction ≔ "y" ↦ "sqrt(144 − y^2) − 12"

;elseIf t = "convex parabolic"

 mirrorFunction ≔ "y" ↦ "y^2 / 40"

;elseIf t = "sine"

 mirrorFunction ≔ "y" ↦ "sin(y/2)"

;elseIf t = "line"

 mirrorFunction ≔ "y" ↦ "0.8⋅y"

;endif

mirror ≔ createImage("❨mirrorFunction(y), y❩", "y", [-10, 10,

0.01])

beginDrawing(0)

drawLines("mirror", "colour:red")

;iterate y:-8:8

 ;; Incoming ray

 mFy ≔ mirrorFunction(y)

 drawLine(❨xmin, y❩, ❨mFy, y❩)

 ;; Reflected ray

 dxdy ≔ diff("mirrorFunction(y)", "y", y)

 ;;tangent ≔ ❨dxdy, 1❩

 ;;normal ≔ ❨-1, dxdy❩

 θ ≔ 2⋅angle(❨-1, 0❩, ❨-1, dxdy❩)⋅sgn(dxdy)

 endpoint ≔ ❨xmin, (-xmin + mFy)⋅tan(θ) + y❩

 drawLine(❨mFy, y❩, endpoint)

;enditerate

delete("mFy")

delete("θ")

delete("y")

delete("xmin")

delete("dxdy")

delete("endpoint")

delete("t")

endDrawing(0)

redraw(0)

The user can call it either with mirrorSim(t ≔ "circular") or mirrorSim(t ≔ "parabolic"), to simulate light

reflection in a circular or a parabolic mirror. The results are interesting.

AlgoSim 2.0 User’s Guide

 61/110

In the case of a circular mirror, when you send parallel light rays to the mirror, the reflected rays do not

intersect in a common point, as is the case of a parabolic mirror.

The program mirrorSim3, which I do not list here, tells us that the “same” thing applies to three-

dimensional mirrors as well, i.e. a parabolic mirror has a well-defined focus, whereas a spherical mirror

does not. Try mirrorSim3(t ≔ "spherical") and mirrorSim3(t ≔ "parabolic").

All these programs are included in a normal installation of AlgoSim. Hence, you can start any of them at

the console. For instance, to start the wave simulator, simply execute

waveSim(0)

AlgoSim 2.0 User’s Guide

62/110

Programming Reference Chart

Conditionals

;if <cond>

 . . .

;elseIf <cond>

 . . .

;elseIf <cond>

 . . .

;else

 . . .

;endIf

Repeat Loops

Simple Condition. Eval At End

;repeat

 . . .

;indefinitely

;repeat

 . . .

;until <cond>

;repeat

 . . .

;while <cond>

DoWhile Loop

Simple Condition. Eval At Beginning

;doWhile <cond>

 . . .

;stop

For Loop

;for <init>; <every-but-first>

 . . .

;stop

Typical Usage:

;for x ≔ 1; x ≔ x + 1; x ≤ 10

 . . .

;stop

Iterate Loop

;iterate x:a:b, y:α:β, …

 . . .

;endIterate

or

;iterate x:a:b:c, y:α:β:γ, …

 . . .

;endIterate

In Any Loop

;break

;continue

Anywhere

;exit

;return <value>

;; This line is a comment

AlgoSim 2.0 User’s Guide

 63/110

Database of Mathematical and Physical Constants

While working with physics and engineering problems, one often needs to input physical constants, such

as the mass of an electron, the elementary charge, or Wien’s displacement constant. Using AlgoSim, you no

longer need to find these numbers in an external database. Instead, the function call constant(“name of

constant”) returns the value of the desired constant.

For instance,

You do not need to remember the exact name of the constant. For instance, all these identifiers return the

same constant:

 “Avogadro constant”

 “Avogadro number”

 “Avogadro’s constant”

 “Avogadro’s number”

 “The Avogadro constant”

 “The Avogadro number”.

You can view and edit the database of constants yourself. There is one constants.asd file in the common

directory, and one in the local directory. On a typical Windows 7 system, the complete paths are

 C:\Program Files (x86)\AlgoSim\constants.asd

 C:\Users\Andreas Rejbrand\AppData\Local\Rejbrand\AlgoSim\2.0\constants.asd

Simply double-click the local constants.asd file to add, remove, or change constants. The changes will only

affect the current user, so each Windows user can have her own table. If the local constants.asd file is

missing, the common table will be used. To restore the default operator table, remove the local one or

replace it with the common one.

AlgoSim 2.0 User’s Guide

64/110

Dictionaries
AlgoSim is not only about computations, but general reference as well. The most important (so far) im-

plementation in this area is the dictionary interface. A dictionary is a text file where each row is an entry

containing the word, the class (noun, verb, etc.) and the definition, separated by a horizontal tabulation

character (U+009). In the current version, AlgoSim is shipped with a comprehensive English dictionary. To

load it to computer memory (which might take a few seconds), use the loadDictionary command and

specify the file name of the dictionary, i.e. write

loadDictionary("data/english")

To look up a word in the dictionary, use the function dictionaryLookup, and specify the word as the ar-

gument (as a string, of course). You can also find words matching a pattern by using dictionatMatch-

Word. There are functions related to palindromes and anagrams: dictionaryListAnagrams list all ana-

grams of a word, dictionaryListWordsWithAnagrams returns the list of all words that have at least one

anagram (it might take a few hours to compile the list), and dictionaryListPalindromes returns the list of

all non-trivial palindromes (such as “detartrated”). Furthermore, you can use dictionaryGetWordSet to

obtain the set of all English words, literally.

The English dictionary comes from the English-language Wiktionary at http://en.wiktionary.org, a Wiki-

Media project. All data is licensed under the Creative Commons Attribution/Share-Alike License 3.0 found

at http://creativecommons.org/licenses/by-sa/3.0/legalcode. A human-readable version of the license is

available at http://creativecommons.org/licenses/by-sa/3.0/.

http://en.wiktionary.org/
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/

AlgoSim 2.0 User’s Guide

 65/110

Saving/Loading Data
You can save data using the saveTextToFile, saveVectorToFile, saveMatrixToFile, savePixmapToFile,

saveSoundToFile, saveStructToFile, savePointSetToFile, saveTableToFile, and saveTableDataTo-

TextFile functions. They all require two arguments: the object to save, and a file name. Remember that

you can use the function fileSaveDialog(0) instead of writing the file name manually. Below is a descrip-

tion of the files created:

 Text

A plain-text UTF-8 file. Please use file extension *.txt or *.asd.

 Vector

A plain-text UTF-8 file; one component per row. Please use file extension *.txt or *.asd.

 Matrix

A plain-text UTF-8 file; one row per row, columns separated by tab characters (U+0009). Please

use file extension *.txt or *.asd.

 Pixmap

Depending on the file extension, an AlgoSim Pixmap (*.asd), Windows Bitmap (*.bmp), or Porta-

ble Network Graphics (*.png) raster image file will be created.

 Sound

A PCM WAV (*.wav) file will be created. Please use extension *.wav.

 Structures

An AlgoSim structure file will be created. This is a binary, non-plain text file. Please use extension

*.asd.

 Table

An AlgoSim table file will be created. Both table data and table style will be saved. This is a binary,

non-plain text file. Please use extension *.asd.

 Table Data

A plain-text UTF-8 file is created; one row per row, columns separated by tab characters

(U+0009). Please use file extension *.txt or *.asd.

 Point Set

An AlgoSim point set file is created. If the set to be saved contains other elements than real points

(vectors), only the real points (vectors) will be saved, and all other elements will be ignored.

Please use extension *.asd.

AlgoSim 2.0 User’s Guide

66/110

To each save*ToFile function, there is a corresponding load*FromFile function. This takes one single ar-

gument, the file name, and returns the object. However, the simplest way of opening a *.txt, *.asd, *.bmp,

*.png, or *.wav file in AlgoSim is to drag it to the AlgoSim main window from Windows Explorer. Try this!

Moreover, the simplest way of saving data files from AlgoSim, is to use the advanced variable manager.

This can be opened by double-clicking somewhere inside the Identifiers list view in the main window.

This ends the first part of this User’s Guide. The following part describes all built-in functions in detail.

AlgoSim 2.0 User’s Guide

 67/110

Appendix I: Function Reference

∀
∀(S, var, expr) returns true if every element in the set S
satisfies the boolean-valued expression expr in the variable
var.

Example: S ≔ [1, 100]
 ∀(S, "n", "isPerfect(n)") = false

∃
∃(S, var, expr) returns true if there exists (at least one)
element in the set S satisfying the boolean-valued expression
expr in the variable var.

Example: S ≔ [1, 100]
 ∃(S, "n", "isPerfect(n)") = true

∏
∏(expr, var, a, b) returns the product expr(a) ⋅ expr(a + 1) ⋅ ...
⋅ expr(b) where expr is a string representing a real-valued
expression in var. var is a string representing a valid identifi-
er, used as the independent variable in expr. a and b are
integers, corresponding to the first and last factor of the
product, respectively; thus, there are exactly b − a + 1 factors
in the product.

∑
∑(expr, var, a, b) returns the sum expr(a) + expr(a + 1) + ... +
expr(b) where expr is a string representing a real-valued
expression in var. var is a string representing a valid identifi-
er, used as the independent variable in expr. a and b are
integers, corresponding to the first and last term of the
summation, respectively; thus, there are exactly b − a + 1
terms in the sum.

Examples: ∑("1/n!", "n", 0, 100) = 2.71828182846

∫
∫(expr, var, a, b) computes the definite integral of expr (the
integrand, a string representing a real-valued expression)
with the variable var, a string representing a valid identifier
that may occur inside expr, between the values a and b of the
independent variable var.

Examples: ∫("sin(x)", "x", 0, π) = 2
 ∫("exp(sin(x))", "x", 0, 5) = 7.18911925363

abs
abs(x) returns the absolute value of the real or complex
number x, i.e. the distance between the point x on the real
number line or complex plane and the origin.

absVect
absVect(v) returns the vector v with all components replaced
by their 2-norm.

addDays
addDays(d, n) returns the date and time structure corre-
sponding to n days after the date structure d.

Example:

addDays(encodeDate(2010, 06, 19), -1)

year: 2010
month: 6
day: 18
weekOfYear: 24
dayOfYear: 169
dayOfWeek: 5
hour: 0

minute: 0
second: 0
millisecond: 0

addHours
addHours(d, n) returns the date and time structure corre-
sponding to n hours after the date and time structure d.

addMemberToStruct
addMemberToStruct(str, ident, val) adds to the structure str
(a string representing the identifier of a structure variable) a
new member ident (a string) with value val (a number, a
string, a boolean, or another structure).

addMilliseconds
addMilliseconds(d, n) returns the date and time structure
corresponding to n milliseconds after the date and time
structure d.

addMinutes
addMinutes(d, n) returns the date and time structure corre-
sponding to n minutes after the date and time structure d.

addSeconds
addSeconds(d, n) returns the date and time structure corre-
sponding to n seconds after the date and time structure d.

addVectorComponent
addVectorComponent(s, x) adds the real or complex number
x to the real or complex vector named s, a string representing
the valid identifier of an existing real or complex vector
variable, as a new component. Thus the dimension of the
vector named s will increase by one.

addWeeks
addWeeks(d, n) returns the date and time structure corre-
sponding to n weeks after the date and time structure d.

Example:

addWeeks(encodeDate(2010, 06, 19), 10)

year: 2010
month: 8
day: 28
weekOfYear: 34
dayOfYear: 240
dayOfWeek: 6
hour: 0
minute: 0
second: 0
millisecond: 0

angle
angle(v1, v2) returns the angle between the vectors v1 and
v2 [as given by the 2-norm].

animateTrajectory
animateTrajectory(S, I, b) animates the particle or flow
trajectory set S, created using computeParticleTrajectory or
computeFlowTrajectory. S is required to be a subset of R^2. I
is the number of steps in time per frame. If b=true, the parti-
cle's trace is shown on the screen.

Example: Bouncing ball in gravity in a 2D box
 trajectory ≔ computeParticleTrajectory("❨0, -1❩", "r",
❨-10, 10❩, ❨1, 0❩, 0, 100, 0.01, ❨-10, 10, -10, 10❩, 0.8)
 animateTrajectory("trajectory", 30, true)

animateTrajectory3
animateTrajectory3(S, I, b) animates the particle or flow
trajectory set S, created using computeParticleTrajectory or
computeFlowTrajectory. S is required to be a subset of R^3. I

AlgoSim 2.0 User’s Guide

68/110

is the number of steps in time per frame. If b=true, the parti-
cle's trace is shown on the screen.

Example: Bouncing ball in gravity in a 3D box
 trajectory ≔ computeParticleTrajectory("❨0, 0, -1❩", "r",
❨-10, 10, 10❩, ❨1, 2, 0❩, 0, 100, 0.01, ❨-10, 10, -10, 10, -10,
10❩, 0.8)
 animateTrajectory3("trajectory", 30, true)

arccos
arccos(x) is the inverse of cos(x) restricted to the interval [0,
π]. For the real arccos function, x must be in the interval [-1,
1].

arccosh
arccosh(x) is the inverse of cosh(x).

arccot
arccot(x) is the inverse of cot(x) restricted to the interval]0,
π[.

arccoth
arccoth(x) is the inverse of coth(x).

arccsc
arccsc(x) is the inverse of csc(x) restricted to the interval [-
π/2, 0[.

arccsch
arccsch(x) is the inverse of csch(x).

arcsec
arcsec(x) is the inverse of sec(x) restricted to the interval [0,
π/2[.

arcsech
arcsech(x) is the inverse of sech(x).

arcsin
arcsin(x) is the inverse of sin(x) restricted to the interval [-
π/2, π/2]. For the real arcsin function, x must be in the inter-
val [-1, 1].

arcsinh
arcsinh(x) is the inverse of sinh(x).

arctan
arctan(x) is the inverse of tan(x) restricted to the interval [-
π/2, π/2].

arctan2
arctan2(x, y) returns the angle between the positive x-axis
and the vector from the origin to the point (x, y) ∈ R^2,
within the interval]-π, π].

arctanh
arctanh(x) is the inverse of tanh(x).

arg
arg(z) returns the complex argument of the complex number
z, i.e. the angle between the positive real (x) axis and the
vector from the origin to z in the complex plane, in the inter-
val]-π, π].

Thus if z = x + yi where x and y are real numbers, arg(z) =
arctan2(x, y).

assert
assert(b) will yield an exception (error) if b, a boolean, is
false. If b is true, assert will do nothing.

augment
augment(M1, M2) returns the real or complex matrix com-
posed of the real or complex matrices M1 and M2 side by
side, if only they have the same number of rows.

augment(M, v) returns the real or complex matrix composed
of the real or complex matrix M with the real or complex
vector v added to the right of M, if only M has as many rows
as the dimension (number of entries) of v.

baseNInput
baseNInput(s, N) returns the integer represented by the
string s in base-N, where s is a string of the N − 1 base-N
digits 0, 1, 2, ..., 8, 9, A, B, ...(, Y, Z).

For example, baseNInput("567", 10), baseNInput("FF", 16),
baseNInput("1000", 2), baseNInput("43HA2", 20), and
baseNInput("43HA2", 16) will return 567, 255, 8, 671002,
and the error message "The base-N digit H is not used in base
16", respectively.

By default, the infix operator # is mapped to the baseNInput
function. Its first operand is a raw string, and the second
operand is an integer. Hence
567#10, FF#16, 1000#2, 43HA2#20, and 43HA2#16 will
return the same results as those obtained above.

beep
beep(0) produces a brief Windows default beep sound.

beep(0, 1) produces a Windows default "Asterisk" sound.
beep(0, 2) produces a Windows default "Exclamation" sound.
beep(0, 3) produces a Windows default "Critical Stop" sound.
beep(0, 4) produces a Windows default "Question" sound.

beep(1, freq, dur) produces a sine tone with frequency freq
[Hz] and duration dur [ms] using Windows API.

beginDrawing
beginDrawing(0) increases the common halt index of the 2D
and 3D visualization windows by one. Initially, this index is
equal to zero, and if it is positive and an object (set, pixmap,
geometrical entity, etc.) is added to the window, the window
is not redrawn on-screen.

Bernstein
Bernstein(i, n, x) returns the ith Bernstein basis polynomial
of degree n at x.

Bernstein(i, n, x) = comb(n, i)⋅x^i⋅(1−x)^(n−i), if i = 0, 1, ..., n
and n are integers.

bessel
bessel(n, x) is the nth order (n ∈ ℕ) Bessel function of the
first kind evaluated at x ∈ ℝ.

Bézier
Bézier(S) returns the Bézier curve (as a point set) of the
control points in S, a set containing n-dimensional vectors.

Example: Cubic Bézier curve (i.e. four control points)
 be ≔ Bézier({❨1, 3❩, ❨2, 6❩, ❨3, -7❩, ❨5, 3❩})
 drawLines("be")

CaesarCipher
CaesarCipher(str, n) transforms the string str using the
Caesar cipher, i.e. shifts all English letters n steps to the right
along the alphabet (modulo 26).

CaesarCipher(str) assumes n = 3, and the inverse of str ↦
CaesarCipher(str, n) is str ↦ CaesarCipher(str, -n).

AlgoSim 2.0 User’s Guide

 69/110

ceil
⌈x⌉ = ceil(x) returns the smallest integer greater than or
equal to x, i.e. rounds x to the nearest integer in the direction
of +∞.

centerOfMass
centerOfMass(S) returns the center of mass as a real vector
in the set S of real vectors.

Example: centerOfMass({❨1, 3, 2❩, ❨2, 1, 3❩, ❨5, 2, 1❩, ❨-1, 2,
3❩, ❨2, 1, 3❩}) = ❨1.75, 2, 2.25❩

changeInstrument
changeInstrument(n) changes the current MIDI musical
instrument to n ∈ [0, 127] (an integer).

changeMidiVolume
changeMidiVolume(x) sets the sound intensity (volume) of
MIDI sounds to x ∈ [0, 1] on all channels.

changeMidiVolume(l, r) sets the sound intensity of MIDI
sounds to l ∈ [0, 1] and r ∈ [0, 1] on the left and right stereo
audio channel, respectively.

choiceDialog
choiceDialog(S1, S2, ..., Sn) displays a dialog in which the user
can choose between the strings S1, S2, ..., Sn. The choice of
the user, one of the Sk's, is returned.

chooseDirectoryDialog
chooseDirectoryDialog(0) displays a directory browser
dialog and returns the selected directory.

chr
chr(n) returns the Unicode character with integer codepoint
n. In addition, if n ∈ [0, 127], this is the same as the nth ASCII
character.

Example: chr(8882) = "⊲"

chrBlock
chrBlock(s) returns the Unicode block name of the Unicode
character (i.e., single-character string) s.

Example: chrBlock("⊲") = "Mathematical Operators"

chrDescribe
chrDescribe(s) returns the description of the Unicode char-
acter (i.e., one-character string) s.

Example: chrDescribe("⊲") = "NORMAL SUBGROUP OF"

Ci
Ci(x) is the cosine integral.

Ci(x) = γ + ln(x) + ∫(cos(t) − 1)/t) dt from 0 to x where

γ = 0.57721 56649 01532... is the Euler–Mascheroni con-
stant.

clearView
clearView(0) clears the 2D visualization window, i.e. re-
moves all drawings.

clearView3
clearView3(0) clears the current 3D visualization window,
i.e. removes all drawings in it.

cls
cls(0) clear the text console.

comb
comb(n, k) = n!/(k! ⋅ (n−k)!) returns the number of subsets
with k elements that can be created using elements from a
set of n elements.

comb(n, k) is also known as a binomial coefficient. It is re-
quired that k ∈ [0, n].

combineStructs
combineStructs(str1, str2) returns the structure, the set of
its members being the union of the corresponding sets of the
structures str1 and str2.

Example:

combineStructs(date(0), time(0))

year: 2010
month: 6
day: 23
weekOfYear: 25
dayOfYear: 174
dayOfWeek: 3
hour: 15
minute: 20
second: 34
millisecond: 774

because

date(0)

year: 2010
month: 6
day: 23
weekOfYear: 25
dayOfYear: 174
dayOfWeek: 3

time(0)

hour: 15
minute: 20
second: 48
millisecond: 615.

complexCoords
complexCoords(S) returns the R^2 subset naturally corre-
sponding to the C subset S. Useful for plotting complex sets
using drawSet, drawLines, etc.

complexIdentityMatrix
complexIdentityMatrix(n) returns the n-dimensional com-
plex identity matrix, i.e. the n×n square matrix with all en-
tries equal to δ(m, n) where δ is the Kronecker delta func-
tion.

complexZeroMatrix
complexZeroMatrix(m, n) returns the complex m×n matrix
with all zero entries.

computeFlowTrajectory
computeFlowTrajectory(expr, var, r, t0, t1, δt) returns the
curve in n-dimensional space traced out by a particle that
has the velocity expr(var) at point var in space. expr is thus a
real n-dimensional vector-valued function in var, a valid
identifier for a n-dimensional position vector. r ∈ R^n is the
initial position of the particle. t0 is the initial time of the
simulation, and t1 is the final time. δt is the temporal resolu-
tion.

Example: a ≔ 2
 b ≔ 3.001

AlgoSim 2.0 User’s Guide

70/110

 vectorField ≔ createVectorField("❨1 + a⋅x^2⋅y − b⋅x−x, -
a⋅x^2⋅y + b⋅x❩", "x, y", [0, 10, 0.25]^2)
 drawVectorField("vectorField", "colour:#333333")

 flow ≔ computeFlowTrajectory("❨1 + a⋅r_1^2⋅r_2 −
b⋅r_1 − r_1, -a⋅r_1^2⋅r_2 + b⋅r_1❩", "r", ❨1, 4❩, 0, 100, 0.01)
 drawLines("flow", "colour:gold")

computeMatrix
computeMatrix(m, n, expr, vars) computes a m×n matrix
from a function expr of the matrix element's indices, vars, a
comma-separated list of valid identifiers.

Example: Computes a 10 by 10 multiplication table
 computeMatrix(10, 10, "m⋅n", "m, n")

 Computes a list of the 100 first prime numbers
 computeMatrix(100, 1, "prime(m)", "m, n")

 Computes a list of the 100 first prime numbers, and
their 5 first powers
 computeMatrix(100, 5, "prime(m)^n", "m, n")

computeParticleTrajectory
computeParticleTrajectory(expr, var, r, v, t0, t1, δt) computes
the curve in n-dimensional space that a particle will trace out
if the force field is expr, a string representing a real-valued
expression in var, a string representing a valid identifier. r ∈
R^n is the particle's initial position, and v ∈ R^n is its initial
velocity. t0 and t1 is the initial and final time, respectively. δt
is the temporal resolution, typically 0.001 for a high-res
simulation of a few seconds. To plot the trajectory, simply
use drawSet/drawLines or drawSet3/drawLines3, if n = 2 or
n = 3, respectively.

computeParticleTrajectory(expr, var, r, v, t0, t1, δt, BB),
where BB ∈ R^2n, will impose a box which the particle will
not be able to move outside of; instead, if it hits the inside of
the box, it will bounce back. The two first components of BB
are the lowest and highest bounds of the first dimension, the
third and forth components are the lowest and highest
bounds of the second dimension, and so on. Thus ❨-10, 10, -
10, 10❩ is a symmetric 20×20 2D box, and ❨-10, 10, -10, 10, -
10, 10❩ is a symmetric 20×20×20 3D box, and so on.

computeParticleTrajectory(expr, var, r, v, t0, t1, δt, BB, f)
uses the box BB and the factor f of speed preservation at each
bounce. If f = 0, all kinetic energy is lost at every (in practice,
the first) bounce, and if f = 1 it will continue to bounce indef-
initely.

Example: Bouncing ball in gravity in a 2D box
 trajectory ≔ computeParticleTrajectory("❨0, -1❩", "r",
❨-10, 10❩, ❨1, 0❩, 0, 100, 0.01, ❨-10, 10, -10, 10❩, 0.8)
 drawSet("trajectory", "colour:red")

constant
constant(s) returns the value of the physical/mathematical
constant named s, a string.

For example, constant("electron mass") = 9.10938215⋅10^-
31.

The database of constants is stored in constants.asd in the
AlgoSim installation directory. You can edit this file (by
double-clicking it) to add, change, and remove constants.

containsDuplicate
containsDuplicate(v) returns true if the real or complex
vector v contains the same number at at least two different
components.

contents
contents(S) returns a list of the contents of the set S as the
number of elements of each possible data type.

Example: contents({1, i, ❨1, 2❩, "test"})
 1 real number(s)
 1 complex number(s)
 1 real vector(s)
 1 string(s)

contents(s) returns a list of the contents of the set named s, a
string representing the valid identifier of a set variable.

Remark: Calling contents with a reference to the set, i.e.
using a string as argument, is generally much faster than
passing the entire set (by value, copying the set data) to the
function.

coprime
m n = coprime(m, n) returns True if m and n are relatively
prime, i.e. if gcd(m, n) = 1, and False otherwise.

Example: 19 8 = True.

copyFile
copyFile(f1, f2) copies the file f1 (a string containing a valid
file name) to f2 (a string containing a valid file name).

copyMatrixToClipboard
copyMatrixToClipboard(M) copies the real or complex ma-
trix M to Window's clipboard.

copyPixmapToClipboard
copyPixmapToClipboard(pm) copies the pixmap pm to
Window's clipboard, as a bitmap.

copyStructToClipboard
copyStructToClipboard(str) copies the structure str to clip-
board, in plain-text format.

copyTableToClipboard
copyTableToClipboard(T) copies the table T to Window's
clipboard.

copyTextToClipboard
copyTextToClipboard(s) copies the string s to clipboard.

copyVectorToClipboard
copyVectorToClipboard(v) copies the real or complex vector
v to Window's clipboard.

cos
cos(x) returns the cosine of x. x is a real or complex number.

Construct the unit circle

x^2 + y^2 = 1

in R^2. Draw the line from the origin to the point P at this
circle, such that the angle to this line, counted from the
positive x-axis (anticlockwise is the positive direction) is
equal to x. Then cos(x) is the x-coordinate of P.

For a general complex number z, Euler's identity

cos(z) = (1/2) ⋅ (exp(iz) + exp(-iz))

defines cos(z). exp is the complex exponential function,
defined such that

exp(z) = e^(Re z) ⋅ (cos (Im z) + i sin (Im z))

where i is the imaginary unit (i^2 = -1) and Re z and Im z are
the real and imaginary parts of z, respectively.

AlgoSim 2.0 User’s Guide

 71/110

cosh
cosh(x) is the hyperbolic cosine, i.e. cosh(x) = (1/2) ⋅ (e^ix +
e^-ix).

cot
cot(x) = cos(x) / sin(x). x is a real or complex number.

coth
coth(x) is the hyperbolic cotangent, i.e. coth(x) = cosh(x) /
sinh(x).

cototient
cototient(n) = n − totient(n) is the number of positive inte-
gers less than or equal to n that are *not* coprime to n.

count
count(S, var, expr) returns the number of elements in the set
S which satisfy the boolean expression expr, a string contain-
ing a boolean expression in one variable, var, which will
iterate over all elements in the set S.

Examples: count({1, 4, 6, 8}, "x", "x>5") = 2
 count({❨1, 0❩, ❨1, 1❩, ❨0, 1❩}, "x", "norm(x) = 1") = 2
 count([1, 100], "n", "isPrime(n)") = 25

count(v, var, expr) returns the number of components in the
real or complex vector v that satisfy the boolean expression
expr in the variable var.

Examples: count(❨1, 3, 3, 4, 5❩, "x", "x=3") = 2

count(M, var, expr) returns the number of elements in the
real or complex matrix M that satisfy the boolean expression
expr in the variable var.

createColouredPlane
createColouredPlane(expr, xmin, xmax, xres, ymin, ymax,
yres) creates a set describing a coloured plane using the
function expr of x and y. expr returns a colour code, e.g. using
the rgb or hsv function. x ∈ [xmin, xmax], y ∈ [ymin, ymax],
and the resolution is xres and yres in the horizontal and
vertical direction, respectively. The resulting set (coloured
plane) is drawn using the drawColouredPlane function.

Example:
 Superposition of two water waves.
 ψ ≔ "r" ↦ "sin(4⋅norm(❨2, 2❩ − r))/6"
 Φ ≔ "r" ↦ "sin(4⋅norm(❨0, 0❩ − r))/6"
 S ≔ "r" ↦ "ψ(r) + Φ(r)"
 waves ≔ createColouredPlane("hsv(90 − 270⋅S(❨x, y❩),
1, 1)", -10, 10, 0.1, -10, 10, 0.1)
 drawColouredPlane("waves")

createComplexMatrix
createComplexMatrix(s, m, n) creates a new complex m×n
matrix with the name s (which must be a string, and a valid
identifier), and opens the matrix editor so its entries can be
entered.

createDlaFractal
createDlaFractal(w, h, n) creates a DLA (diffusion-limited
aggregation) fractal pixmap of width w and height h, using n
iterations.

Example: createDlaFractal(500, 500, 100 000)

createGraph
createGraph(expr, var, int) returns the graph { (x, y) : y =
expr(var), var ∈ int }, where expr (a string, an expression) is
a function of var (a string, a valid identifier), and the pre-
image is the interval (or, generally, set) int.

Examples: set ≔ createGraph("sin(x)", "x", [-10, 10, 0.001])

 drawSet("set")

createGraph3
createGraph3(expr, vars, set) creates the three-dimensional
graph { (x, y, z) ∈ R^3: (x, y, z) = (x, y, expr(x, y)), (x, y) ∈ set }
of expr, a string representing a real-valued expression in two
variables, listed in vars, a comma-separated string of valid
identifiers, where the independent variables, as a vector ❨x,
y❩, take on each value in set, a set of planar vectors.

Examples: surf ≔ createGraph3("sin(sqrt(x^2 + y^2))", "x,
y", [-10, 10, 0.1]^2)
 drawSet("surf")

Important Remark: In most cases, createSurfParamCurves
and drawSurfParamCurves are much more efficient and
visually pleasing than createGraph3/createImage and
drawSet3.

createGraph3 and drawSet3 draws a surface as a uniform
point set, that is, to make a dense surface you need as many
points as required by the screen resolution, which takes very
long time to compute. In addition, because this is a mere
point set and not a true 3D surface, realistic lightning is not
applied, and so it might be difficult to view the surface.

createNet, createImage, and drawSet3 partly resolve this
problem. Using createNet, you can create a grid in the pa-
rameter plane of the surface, and then apply createImage to
these parameter lines instead. When drawn using drawSet3,
only the parameter curves (at some distance and resolution)
are drawn, thus greatly simplifying the interpretation of the
resulting image. In addition, only a small fraction of the
points required by the naïve approach (createGraph3 and
drawSet3) are required. (Indeed, we only draw the surface's
parameter curves, not the entire surface.) However, the
parameter curves are drawn by simply plotting points of
them, and so this method is as insufficient as drawSet as
compared to drawLines when drawing a 2D curve (or
drawSet3 as compared to drawLines3).

To draw a surface parameter curves using polyline approxi-
mation (usually not even a visible loss in quality, but ex-
tremely fast), use createSurfParamCurves and drawSurf-
ParamCurves instead.

createImage
createImage(expr, var, set) creates the image of the set set
under the function expr of the variable var.

Examples: spiral ≔ createImage("❨FresnelC(t), Fres-
nelS(t)❩", "t", [-10, 10, 0.01])
 drawLines("spiral")

 spiral ≔ createImage("❨3⋅cos(t), 3⋅sin(t), t/2, hsv(10⋅t,
1, 1)❩", "t", [-30, 30, 0.01])
 drawColouredLines3("spiral")

 createImage("2⋅x", "x", {"test", 10, ❨1, 2❩}) = {"testtest",
20, ❨2, 4❩}

createImageOfVectors
createImageOfVectors works exactly as createImage, but will
only accept real vector-valued functions. In return, it is much
faster than the more versatile createImage.

createMatrix
createMatrix(s, m, n) creates a new m×n matrix with the
name s (which must be a string, and a valid identifier), and
opens the matrix editor so its entries can be entered.

createNet
createNet(x0, x1, δx, Δx, y0, y1, δy, Δy) returns a planar set
with a 2D grid, in the region x ∈ [x0, x1], y ∈ [y0, y1]. The

AlgoSim 2.0 User’s Guide

72/110

horizontal lines have the resolution δx, and the vertical lines
have the resolution δy. The spacing between vertical lines is
Δx, and the spacing between horizontal lines is Δy.

Example: A square grid.
 net ≔ createNet(-10, 10, 0.01, 1, -10, 10, 0.01, 1)
 drawSet("net")

 An illustrative way to draw a grid cylinder with radius 4.
 net ≔ createNet(0, 2⋅π, 0.01, π/12, -10, 10, 0.1, 1)
 paramNet ≔ createImage("❨4, r_1, r_2❩", "r", net)
 cylinder ≔ cylindricalCoords(paramNet)
 drawSet3("cylinder")

createPixmap
createPixmap(w, h) creates and returns a new pixmap with
width w and height h.

createSet
createSet(expr) returns the set of all points (x, y) in [-10,
10]^2 that satisfies expr, a string containing an expression in
x and y. Typically, this expression is a boolean statement
utilizing a relation operator, such as =, <, or >. The default
resolution 0.05 is used.

createSet(expr, res) uses the resolution res.

createSet(expr, xmin, xmax, ymin, ymax) tests only points
within [xmin, xmax]×[ymin, ymax] with the default resolu-
tion 0.05.

createSet(expr, xmin, xmax, ymin, ymax, res) tests only
points within [xmin, xmax]×[ymin, ymax] with the resolution
res.

Example: Draw the (open) unit disk:
 set ≔ createSet("x^2 + y^2 < 1", -1, 1, -1, 1)
 drawSet("set")

Remark: The open unit disk may also be parametrized via
γ(r, φ) = ❨r⋅cos(φ), r⋅sin(φ)❩ where r ∈ [0, 1] and φ ∈ [0,
2⋅π[. The parametric approach is much faster. The implicit
createSet function is more useful for sets that cannot be
(easily) parametrised.

createSineTone
createSineTone(f, d) returns a sound of a pure sine tone of
frequency f [Hz] with duration d [s].

Example: createSineTone(400, 1) creates a 400 Hz sine tone
with a duration of one second.

createStruct
createStruct(I1, V1, I2, V2, ..., In, Vn) creates a structure with
identifiers I1, I2, ..., In with values V1, V2, ..., Vn. Every Ik
must be a string (and a valid identifier), and every Vk must
be a number, a string, a boolean, or another structure.

Examples:

createStruct("firstName", "Andreas", "lastName", "Rejbrand",
"yearOfBirth", 1987, "IQ", ∞)

firstName: Andreas
lastName: Rejbrand
yearOfBirth: 1987
IQ: ∞

createStruct("date", date(0), "time", time(0))

date:year: 2010
date:month: 6
date:day: 23
date:weekOfYear: 25

date:dayOfYear: 174
date:dayOfWeek: 3
time:hour: 15
time:minute: 3
time:second: 43
time:millisecond: 192

ans:time:millisecond = 192

createSurfParamCurves
createSurfParamCurves(expr, vars, x0, x1, y0, y1) creates a
special set with the parameter curves of the surface de-
scribed by expr, a real three-dimensional vector-valued
function in the two variables listed in the comma-separated
string vars. The first variable will run through [x0, x1], and
the second through [y0, y1]. The resulting set is drawn by the
drawSurfParamCurves function.

Examples: garden ≔ createSurfParamCurves("❨x, y,
sin(x⋅randomReal(1)) ⋅ sin(y)❩", "x, y", -10, 10, -10, 10)
 drawSurfParamCurves("garden", "colour:gold")

 grass ≔ createSurfParamCurves("❨x, y, randomRe-
al(1)❩", "x, y", -10, 10, -10, 10)
 drawSurfParamCurves("grass", "colour:forestgreen")

 surf ≔ createSurfParamCurves("❨x, y, sin(sqrt(x^2 +
y^2)), hsv(x^2 + y^2, 1, 1)❩", "x, y", -10, 10, -10, 10)
 drawColouredSurfParamCurves("surf")

 // Superposition of water waves (without attenua-
tion...)
 ψ ≔ "r" ↦ "sin(4⋅norm(❨2, 2❩ − r))/6"
 Φ ≔ "r" ↦ "sin(4⋅norm(❨0, 0❩ − r))/6"
 S ≔ "r" ↦ "ψ(r) + Φ(r)"
 set ≔ createSurfParamCurves("❨x, y, S(❨x, y❩), hsv(90
− 270⋅S(❨x, y❩), 1, 1)❩", "x, y", -10, 10, -10, 10)
 drawAxes3(1)
 drawColouredSurfParamCurves("set")

See also: drawSurfParamCurves. Compare to: createSet,
createGraph3, drawSet3, createNet

createTable
createTable(s, m, n) creates a new m×n string table with the
name s (which must be a string, and a valid identifier), and
opens the table editor so its entries can be entered.

createVectorField
createVectorField(expr, vars, set) creates a vector field from
the equation expr. expr is a string representing a real vector-
valued expression in two variables, given by vars, a comma-
separated string of the valid identifiers. expr(x, y) is sup-
posed to give the vector at the point (x, y) in the plane. The
resulting set is a vector field, a set of vectors (x, y, vx, vy)
associating a vector (vx(x, y), vy(x, y)) to each point (x, y) in
the plane. set is the set of points (x, y) for which the expres-
sion expr is evaluated.

Examples: Vertical constant vector field (e.g. gravity):
 gravity ≔ createVectorField("❨0, -1❩", "x, y", [-10,
10]^2)
 drawVectorField("gravity", "colour:#333333")

 Horizontal linear vector field (e.g. a spring force)
 force ≔ createVectorField("❨-x, 0❩", "x, y", [-10, 10]^2)
 drawVectorField("force", "colour:#333333")

 An oscillating chemical reaction
 a ≔ 2
 b ≔ 3.001

 vectorField ≔ createVectorField("❨1 + a⋅x^2⋅y − b⋅x−x,
-a⋅x^2⋅y + b⋅x❩", "x, y", [0, 10, 0.25]^2)

AlgoSim 2.0 User’s Guide

 73/110

 drawVectorField("vectorField", "colour:#333333")

 flow ≔ computeFlowTrajectory("❨1 + a⋅r_1^2⋅r_2 −
b⋅r_1 − r_1, -a⋅r_1^2⋅r_2 + b⋅r_1❩", "r", ❨1, 4❩, 0, 100, 0.01)
 drawLines("flow", "colour:gold")

csc
csc(x) = 1 / sin(x). x is a real or complex number.

csch
csch(x) is the hyperbolic cosecant, i.e. csch(x) = 1 / sinh(x).

cylindricalCoords
cylindricalCoords(S) applies the transformation

x = r⋅sin(φ)
y = r⋅cos(φ)
z = z

to all three-dimensional cylindrical real vectors (r, φ, z) in
the set S, and returns the new set of Cartesian coordinates (x,
y, z).

This is useful for plotting cylindrical graphs. Simply create a
set S of cylindrical coordinates (r, φ, z) and then transform it
using

S ≔ cylindricalCoords(S)

after which it can be plotted using drawSet3, drawLines3,
etc.

Example: An illustrative way to draw a grid cylinder with
radius 4.
 net ≔ createNet(0, 2⋅π, 0.01, π/12, -10, 10, 0.1, 1)
 paramNet ≔ createImage("❨4, r_1, r_2❩", "r", net)
 cylinder ≔ cylindricalCoords(paramNet)
 drawSet3("cylinder")

date
date(0) returns a structure containing the current date. The
members are year, month, day, weekOfYear, dayOfYear, and
dayOfWeek.

day
day(0) returns the name of the current weekday as a string.

daysBetween
daysBetween(d1, d2) returns the number of days between
the date structures d1 and d2.

Example:

d1 ≔ encodeDate(2010, 06, 19)

year: 2010
month: 6
day: 19
weekOfYear: 24
dayOfYear: 170
dayOfWeek: 6

d2 ≔ date(0)

year: 2010
month: 6
day: 23
weekOfYear: 25
dayOfYear: 174
dayOfWeek: 3

daysBetween(d1, d2)

4

defineOperator
defineOperator(kind, symb, func) defines a new operator
with symbol symb, a single character (i.e. a one-character
string) corresponding to the function func, a string with the
name of a (defined) function.

kind is either
* "postfix",
* "prefix", or
* "infix".

In the first two cases, func must accept exactly one argument,
and in the case of an infix operator, it must accept two argu-
ments.

defineOperator(kind, symb1, symb2, func) defines a new
operator with symbol symb1 ... symb2, two single characters
(i.e. two one-character strings) corresponding to the function
func, a string with the name of a (defined) function.

kind must be "circumfix", and func must accept exactly one
argument.

The newly added operator will have a priority lower than all
preveously defined operators.

Examples: defineOperator("postfix", "?", "isPrime")
 53? = true

 defineOperator("circumfix", "$", "@", "totient")
 $80@ = 32

delete
delete(s) removes the identifier (variable) named s. s is the
name of the identifier, and this a string.

Example: delete("r") removes the identifier named "r".

deleteFile
deleteFile(f) deletes the file f (a string containing a valid file
name).

deleteFunction
deleteFunction(fname) deletes the user function with identi-
fier "fname".

Example:

f ≔ "x, y, z" ↦ "2⋅x^2 + y^2 − 3⋅z^2"

f(6, 2, 3)

49

deleteFunction("f")

f(6, 2, 3)

Unknown identifier: Unknown identifier "f".

describe
describe(x) returns the string with the description associat-
ed with the identifier named x, which is the name of the
identifier, i.e. a string.

Example: describe("π") = "The ratio between a circle's cir-
cumference and diameter."

det
det(M) returns the determinant of the real or complex matrix
M.

AlgoSim 2.0 User’s Guide

74/110

diag
diag(a1, a2, ..., an) returns the n×n square matrix with the
entry Mij equal to ai δ(i, j) where δ is the Kronecker delta
function.

diag(❨a1, a2, ..., an❩) returns the n×n square matrix with the
entry Mij equal to ai δ(i, j) where δ is the Kronecker delta
function.

dictionaryGetWordList
dictionaryGetWordList(0) returns the entire (currently
loaded, see loadDictionary) dictionary as a list of words.

dictionaryGetWordSet
dictionaryGetWordSet(0) returns the entire (currently load-
ed, see loadDictionary) dictionary as a set of words (as
strings).

Example: random(dictionaryGetWordSet(0))
 undulated

dictionaryListAnagrams
dictionaryListAnagrams(s) returns the list of all anagrams to
the word (or phrase) s, using the currently loaded dictionary
(see loadDictionary).

Example: dictionaryListAnagrams("algorithm")
 algorithm
 logarithm

dictionaryListPalindromes
dictionaryListPalindromes(0) returns the list of all non-
trivial palindromes in the currently loaded (see loadDiction-
ary) dictionary. A non-trivial palindrome is a word s of at
least three characters, such that s = reverse(s).

dictionaryListWordsWithAnagrams
dictionaryListWordsWithAnagrams(0) returns the list of all
words in the currently loaded dictionary (see loadDiction-
ary) that have non-trivial anagrams. A non-trivial anagram to
a word s is a word, not equal to s, that has the same number
of all letters as s, i.e. if it is a permutation of s. It might take a
few hours to compile the list.

dictionaryLookup
dictionaryLookup(s) searches the currently loaded diction-
ary (see loadDictionary) for the entry s, a string, and returns
the definition(s) of the word.

Example: dictionaryLookup("isomorphism")
 Noun: (algebra) A bijection _f_ such that both _f_ and its
inverse _f_ −1 are homomorphisms, that is, structure-
preserving mappings.
 Noun: (biology) the similarity in form of organisms of
different ancestry
 Noun: (chemistry) the similarity in the crystal struc-
tures of similar chemical compounds
 Noun: (computer science) a one-to-one correspond-
ence between all the elements of two sets, e.g. the instances
of two classes, or the records in two datasets
 Noun: (sociology) the similarity in the structure or
processes of different organizations

dictionaryMatchWord
dictionaryMatchWord(s) searches the currently loaded
dictionary (see loadDictionary) for entries matching the filter
s, a string containing characters and the "_" placeholder. All
entries matching this filter are returned, in a list (i.e., one-
dimensional (vertical) string table). A word matches s iff it
has the same number of characters as s, and the ith character
in s is equal to the "_" placeholder or to the ith character in
the word, for all i.

Examples: dictionaryMatchWord("g__ta_")

 geotag
 gluta-
 guitar

 dictionaryMatch-
Word("_______________________________________")
 Federal Democratic Republic of Ethiopia
 acute necrotising ulcerative gingivitis
 acute necrotizing ulcerative gingivitis
 born with a silver spoon in one's mouth
 cut one's coat according to one's cloth
 defense-independent pitching statistics
 discretion is the better part of valour
 hepaticocholangiocholecystenterostomies
 if my aunt had balls, she'd be my uncle
 it's not what you know but who you know
 out of the frying pan and into the fire
 pairwise linkage disequilibrium diagram
 program evaluation and review technique
 project evaluation and review technique
 selective serotonin reuptake inhibitors
 serum glutamic oxaloacetic transaminase
 there's more than one way to skin a cat
 transmissible spongiform encephalopathy
 well ain't that the catfish in the trap

diff
diff(expr, var, x) returns the derivative of expr (a string
representing an expression in var evaluating to a real num-
ber), as a function of var (a string with a valid identifier) at x,
a real number in the domain of definition of expr.

diff(expr, var, x, h) uses the the explicit distance h in the
independent variable var when computing the derivative. In
some cases, a rather large (e.g. 0.01) value of h might be
required, if expr is only computed with a limited resolution.

Examples: diff("sin(x)", "x", 0) = 1
 diff("FresnelC(t)", "t", π/2, 0.01) = -0.782...

diffGraph
diffGraph(S) returns the graph of the derivative f' of the
function f with the graph S = { ❨x, f(x)❩ }.

Example: sine ≔ createGraph("sin(x)", "x", [-10, 10, 0.001])
 cosine ≔ diffGraph(sine)
 drawSet("cosine")

dim
dim(v) returns the dimension of the real or complex vector v.

Example: dim(❨1, 0, 0❩) = 3

directSum
directSum(S1, S2) = S1 ⊕ S2 returns the direct sum of the
sets S1 and S2, both containing real vectors of the same
dimension.

Example:

s1 ≔ {❨1, 2❩, ❨3, 5❩}

{ ❨1, 2❩, ❨3, 5❩ }

s2 ≔ {❨5, 7❩, ❨2, 4❩}

{ ❨5, 7❩, ❨2, 4❩ }

s1 ⊕ s2

{ ❨6, 9❩, ❨3, 6❩, ❨8, 12❩, ❨5, 9❩ }

AlgoSim 2.0 User’s Guide

 75/110

dirExists
dirExists(s) returns True if the directory s (a string), exists
and False otherwise.

divisors
divisors(n) returns the vector of all positive divisors of the
integer n.

drawArrow
drawArrow(v) draws the arrow of the vector pointing from
the origin to v ∈ R^2 in the current 2D visualization window.

drawArrow(a, b) draws the arrow between the points a ∈
R^2 and b ∈ R^2.

drawArrow(a, b, s) draws the arrow between the points a ∈
R^2 and b ∈ R^2 using the style (CSS) s.

Example: drawArrow(❨0, 0❩, ❨3, 5❩, "line−colour:red; trian-
gle−colour:red")

drawArrow3
drawArrow3(v) draws the arrow of the vector pointing from
the origin to v ∈ R^3 in the current 3D visualization window.

drawArrow3(a, b) draws the arrow between the points a ∈
R^3 and b ∈ R^3.

drawArrow3(a, b, s) draws the arrow between the points a ∈
R^3 and b ∈ R^3 using the style (CSS) s.

Example: drawArrow3(❨0, 0, 0❩, ❨3, 5, 5❩, "line−colour:red;
triangle−colour:red")

drawAxes
drawAxes(0) draws two-dimensional coordinate axes in the
2D visualization window.

drawAxes3
drawAxes3(0) draws three orthogonal axes in the current 3D
visualization window.

drawBox3
drawBox3(v, Δ) draws a box in the current 3D visualization
window, with an edge at v ∈ R^3 and dimensions Δ = (w, h,
d) ∈ R^3.

drawBox3(v, Δ, s) draws a box in the current 3D visualization
window, with an edge at v ∈ R^3 and dimensions Δ = (w, h,
d) ∈ R^3 using the style (CSS) s.

drawCircle
drawCircle(v, r) draws a circle with center v ∈ R^2 and
radius r in the current 2D visualization window.

drawCircle(v, r, s) draws a circle with center v ∈ R^2 and
radius r in the current 2D visualization window using the
style (CSS) s.

All numbers refer to the visualization window's coordinate
system.

Example: drawCircle(❨2, 2❩, 1, "colour:red; bor-
der−colour:white")

drawColouredLines
drawColouredLines(S) plots the point set S in the current 2D
visualization window and connects the points. Each vector in
S needs to be a three-dimensional vector (SIC!), where the
third component is the colour code of the pixel.

Compare: drawColouredSet, and drawLines.

drawColouredLines3
drawColouredLines3(S) plots the point set S in the current
3D visualization window and connects the points. Each
vector in S needs to be a four-dimensional vector (SIC!),
where the forth component is the colour code of the pixel.

Compare: drawColouredSet3, and drawLines3.

Examples: Draw a coloured circular helix
 helix ≔ createImage("❨3⋅cos(t), 3⋅sin(t), t/2, hsv(10⋅t,
1, 1)❩", "t", [-30, 30, 0.01])
 drawColouredLines3("helix")

drawColouredPlane
drawColouredPlane(S) draws the coloured plane S in the
current 2D visualization window. The set S is created by the
createColouredPlane function.

Example:
 Superposition of two water waves.
 ψ ≔ "r" ↦ "sin(4⋅norm(❨2, 2❩ − r))/6"
 Φ ≔ "r" ↦ "sin(4⋅norm(❨0, 0❩ − r))/6"
 S ≔ "r" ↦ "ψ(r) + Φ(r)"
 waves ≔ createColouredPlane("hsv(90 − 270⋅S(❨x, y❩),
1, 1)", -10, 10, 0.1, -10, 10, 0.1)
 drawColouredPlane("waves")

drawColouredSet
drawColouredSet(S) plots the point set S in the current 2D
visualization window. Each vector in S needs to be a three-
dimensional vector (SIC!), where the third component is the
colour code of the pixel.

Compare: drawColouredLines, and drawSet.

drawColouredSet3
drawColouredSet3(S) plots the point set S in the current 3D
visualization window. Each vector in S needs to be a four-
dimensional vector (SIC!), where the forth component is the
colour code of the pixel.

Compare: drawColouredLines3, and drawSet3.

drawColouredSurfParamCurves
drawColouredSurfParamCurves(S) plots the surface parame-
ter curves S in the current 3D visualization window. S is
created by the createSurfParamCurves function.

Examples: surf ≔ createSurfParamCurves("❨x, y,
sin(sqrt(x^2 + y^2)), hsv(x^2 + y^2, 1, 1)❩", "x, y", -10, 10, -
10, 10)
 drawColouredSurfParamCurves("surf")

 // Superposition of water waves (without attenua-
tion...)
 ψ ≔ "r" ↦ "sin(4⋅norm(❨2, 2❩ − r))/6"
 Φ ≔ "r" ↦ "sin(4⋅norm(❨0, 0❩ − r))/6"
 S ≔ "r" ↦ "ψ(r) + Φ(r)"
 set ≔ createSurfParamCurves("❨x, y, S(❨x, y❩), hsv(90
− 270⋅S(❨x, y❩), 1, 1)❩", "x, y", -10, 10, -10, 10)
 drawAxes3(1)
 drawColouredSurfParamCurves("set")

drawCone
drawCone(r, h) draws a cone of radius r > 0 and height h > 0
with the z-axis as its symmetry axis and occupying the region
z ∈ [0, h] in the current 3D visualization window.

drawCone(r1, r2, h) draws a truncated cone of bottom radius
r1 > 0, top radius r2 > 0, and height h > 0 with the z-axis as
its symmetry axis and occupying the region z ∈ [0, h] in the
current 3D visualization window.

AlgoSim 2.0 User’s Guide

76/110

drawCone(v, r1, r2, h) draws a truncated cone of bottom
radius r1 > 0, top radius r2 > 0, and height h > 0. The mid-
point of the bottom plane is v ∈ R^3, so that it occupies the
vertical region z ∈ [v_3, v_3 + h].

drawCone(v, r1, r2, h, s) draws a truncated cone of bottom
radius r1 > 0, top radius r2 > 0, and height h > 0. The mid-
point of the bottom plane is v ∈ R^3, so that it occupies the
vertical region z ∈ [v_3, v_3 + h]. s is the style (CSS) used to
render the object.

drawCylinder
drawCylinder(r, h) draws a cylinder of radius r > 0 and
height h > 0 in the current 3D visualization window. The
cylinder will have the z-axis as its symmetry axis and will
occupy the region z ∈ [0, h] around it.

drawCylinder(v, r, h) draws a cylinder of radius r > 0 and
height h > 0 in the current 3D visualization window. The
cylinder will be directed in the z axis and will have the mid-
point of its bottom plane at v ∈ R^3, so that it will occupy the
vertical region z ∈ [v_3, v_3 + h].

drawCylinder(v, r, h, s) draws a cylinder of radius r > 0 and
height h > 0 in the current 3D visualization window. The
cylinder will be directed in the z axis and will have the mid-
point of its bottom plane at v ∈ R^3, so that it will occupy the
vertical region z ∈ [v_3, v_3 + h]. The cylinder is draws using
the style (CSS) s.

Example: drawCylinder(❨0, 0, 0❩, 3.00, 5, "colour:gray")
 drawCylinder(❨0, 0, 0❩, 3.01, 5, "colour:red")

drawGrid3
drawGrid3(0) draws a square grid in the z = 0 plane, that is,
the plane spanned by the x and y unit vectors.

drawGrid3(0, s) draws a square grid in the z = 0 plane, that
is, the plane spanned by the x and y unit vectors, using the
style (CSS) s.

Example: drawGrid3(0, "colour:green")

drawGrids
drawGrids(s) draws grids in the planes specified by the
comma-separated list (string) s.

The following planes are supported.

Identifier Plane
x x = -10
X x = +10
y y = -10
Y y = +10
z z = -10
Z z = +10

drawGrids(s, fmt) draws grids in the planes specified by the
comma-separates list (string) s, using the style (CSS) fmt.

drawLine
drawLine(v1, v2) draws the straight line segment between
v1 ∈ R^2 and v2 ∈ R^2.

drawLine(v1, v2, s) draws the straight line segment between
v1 ∈ R^2 and v2 ∈ R^2 using the style (CSS) s.

drawLine3
drawLine3(v1, v2) draws the line segment from v1 ∈ R^3 to
v2 ∈ R^3 in the current 3D visualization window.

drawLines
drawLines(S) plots the set S ⊂ R^2 in the 2D visualization
window, and connects the points using lines.

drawLines(S, s) plots the set S ⊂ R^2 in the 2D visualization
window, and connects the points using lines, and using the
style (CSS) s.

Example: spiral ≔ createImage("❨FresnelC(t), FresnelS(t)❩",
"t", [-10, 10, 0.01])
 drawLines("spiral")

drawLines3
drawLines3(S) plots the set S ⊂ R^3 in the 3D visualization
window, and connects the points using lines.

drawLines(S, s) plots the set S ⊂ R^3 in the 3D visualization
window, and connects the points using lines, and using the
style (CSS) s.

Examples: A circular helix with radius 3 and pitch π
 helix ≔ createImage("❨3⋅cos(t), 3⋅sin(t), t/2❩", "t", [-30,
30, 0.01])
 drawLines3("helix")

drawPixmap
drawPixmap(s, x, y) draws the pixmap named s (a string
representing a valid identifier of a pixmap variable) at the
point (x, y) in the current 2D visualization window. (x, y) is
given in the visualization window's logical coordinates.

drawPixmap(s, x, y, fmt) draws the pixmap using the style
(CSS) fmt.

Possible parameters for fmt:
 box-origin: top-left, top-center, top-right, middle-left, mid-
dle-center, middle-right, bottom-left, bottom-center, and
bottom-right specifies what point on the pixmap is to be
located above (x, y).

Example: drawPixmap("ball", 0, 0, "box-origin: middle-
center") if "ball" is a previously defined pixmap.

drawPolygon
drawPolygon(S) draws the polygon with vertices at the
points of S ⊂ R^2 in the current 2D visualization window.

drawPolygon(S, s) draws the polygon with vertices at the
points of S ⊂ R^2 using the style (CSS) s.

Example: vertices ≔ {❨1, 1❩, ❨2, 2❩, ❨3, 1❩}
 drawPolygon("vertices")

Compare to: drawLines, e.g. drawLines("vertices"), or
drawSet, e.g. drawSet("vertices").

drawRect
drawRect(v, ❨w, h❩) draws a rectangle at v ∈ R^2 with width
w and height h in the current 2D visualization window.

drawRect(v, ❨w, h❩, s) draws a rectangle at v ∈ R^2 with
width w and height h in the current 2D visualization window
using the style (CSS) s.

All numbers refer to the visualization window's coordinate
system.

drawSet
drawSet(S) plots the set S ⊂ R^2 in the 2D visualization
window.

drawSet(S, s) plots the set S ⊂ R^2 in the 2D visualization
window using the style (CSS) s.

Examples: set ≔ createGraph("sin(x)", "x", [-10, 10, 0.001])
 derivative ≔ createGraph("cos(x)", "x", [-10, 10, 0.001])
 drawSet("set")

AlgoSim 2.0 User’s Guide

 77/110

 drawSet("derivative", "colour:gold")

drawSet3
drawSet3(S) plots the set S ⊂ R^3 in the 3D visualization
window.

drawSet3(S, s) plots the set S ⊂ R^3 in the 3D visualization
window using the style (CSS) s.

Examples: A straight line.
 r0 ≔ ❨2, 3, 1❩
 v ≔ ❨1, 1, -2❩
 line ≔ createImage("r0 + t⋅v", "t", [-10, 10, 0.001])
 drawSet3("line", "colour:red")

Remark: For most curves, drawLines3 is much more effi-
cient, because a seemingly continuous curve is generated
even if there is a visible distance between the points in the
set. In fact, in this example of a line, only two points are
required to draw the line segment, compared to the 20 000
points used by drawSet3. However, if the curve makes sud-
den jumps, drawLines3 will draw unwanted lines, and
drawSet3 might be required. This is the case, for instance,
when plotting hyperbolas using the sec/tan parametrisation.

drawSphere
drawSphere(r) draws a sphere of radius r > 0 and midpoint
❨0, 0, 0❩ in the current 3D visualisation window.

drawSphere(v, r) draws a sphere of radius r > 0 and mid-
point v ∈ R^3 in the current 3D visualisation window.

drawSphere(v, r, s) draws a sphere of radius r > 0 and mid-
point v ∈ R^3 in the current 3D visualisation window using
the style (CSS) s, a string.

Example: drawSphere(❨0, 0, 0❩, 5, "colour:red")

drawSurfParamCurves
drawSurfParamCurves(S) draws the surface parameter
curves S, a set created by the createSurfParamCurves func-
tion, in the current 3D visualization window.

Examples: garden ≔ createSurfParamCurves("❨x, y,
sin(x⋅randomReal(1)) ⋅ sin(y)❩", "x, y", -10, 10, -10, 10)
 drawSurfParamCurves("garden", "colour:gold")

 grass ≔ createSurfParamCurves("❨x, y, randomRe-
al(1)❩", "x, y", -10, 10, -10, 10)
 drawSurfParamCurves("grass", "colour:forestgreen")

See also: createSurfParamCurves

drawText
drawText(s, x, y) draws the text s (a string) in the 2D visuali-
zation window, at (screen) coordinates (x, y), by default the
top-left corner of the text rectangle.

drawText(s, x, y, fmt) draws the text s (a string) in the 2D
visualization window, at (screen) coordinates (x, y), by
default the top-left corner of the text rectangle, using the
style (CSS) fmt.

Example: drawText("Graphs", 10, 10, "colour:red;
text−size:20")

drawVectorField
drawVectorField(s) draws the vector field s, a string repre-
senting the valid identifier of a vector field set, i.e. a set of
vectors (x, y, vx, vy) associating a vector (vx(x, y), vy(x, y)) to
each point (x, y) of the plane. Such sets are easily generated
from any vector-valued expression using the function creat-
eVectorField.

drawVectorField(s, fmt) uses the format (CSS) fmt.

Examples: Vertical constant vector field (e.g. gravity):
 gravity ≔ createVectorField("❨0, -1❩", "x, y", [-10,
10]^2)
 drawVectorField("gravity", "colour:#333333")

 Horizontal linear vector field (e.g. a spring force)
 force ≔ createVectorField("❨-x, 0❩", "x, y", [-10, 10]^2)
 drawVectorField("force", "colour:#333333")

 An oscillating chemical reaction
 a ≔ 2
 b ≔ 3.001

 vectorField ≔ createVectorField("❨1 + a⋅x^2⋅y − b⋅x−x,
-a⋅x^2⋅y + b⋅x❩", "x, y", [0, 10, 0.25]^2)
 drawVectorField("vectorField", "colour:#333333")

 flow ≔ computeFlowTrajectory("❨1 + a⋅r_1^2⋅r_2 −
b⋅r_1 − r_1, -a⋅r_1^2⋅r_2 + b⋅r_1❩", "r", ❨1, 4❩, 0, 100, 0.01)
 drawLines("flow", "colour:gold")

editMatrix
editMatrix(s) opens the matrix editor and edits the real or
complex matrix called s. Thus, s is the name of the matrix, i.e.
a string.

editOperatorTable
editOperatorTable(0) opens the table editor with the current
operator table loaded, and any changes made to the table will
be used when parsing new expressions.

editTable
editTable(s) opens the table editor and edits the string table
called s. Thus, s is the name of the table, i.e. a string.

eigenvalues
eigenvalues(A) returns the vector of eigenvalues of the real
square matrix A.

In the current implementation, eigenvalues works only for
real non-singular matrices A.

encodeDate
encodeDate(year, month, day) returns the date structure
corresponding to the specified year, month, and day.

Example:

encodeDate(2010, 06, 19)

year: 2010
month: 6
day: 19
weekOfYear: 24
dayOfYear: 170
dayOfWeek: 6

encodeDateTime
encodeDateTime(year, month, day, hour, minute, second)
returns the date and time structure corresponding to the
given year, month, day, hour, minute, and second.

Example:

encodeDateTime(2010, 06, 19, 16, 00, 00)

year: 2010
month: 6
day: 19
weekOfYear: 24
dayOfYear: 170
dayOfWeek: 6

AlgoSim 2.0 User’s Guide

78/110

hour: 16
minute: 0
second: 0
millisecond: 0

encodeTime
encodeTime(hour, minute, second) returns the time struc-
ture corresponding to the specified time.

endDrawing
endDrawing(0) decreases the common halt index of the 2D
and 3D visualization windows by one. Initially, this index is
equal to zero, and if it is positive and an object (set, pixmap,
geometrical entity, etc.) is added to the window, the window
is not redrawn on-screen.

erf
erf(x) is the error function at x.

erf(x) = ∫exp(-t^2)dt where t goes from 0 to x.

erfc
erfc(x) is the complementary error function evaluated at x,
i.e. erfc(x) = 1 − erf(x).

error
error(s) displays s as an error message. s is a string.

exit
exit(0) exits AlgoSim.

exp
e^x = exp(x) is the exponential function.

For a complex number z,

e^z = exp(z) = e^(Re z) ⋅ (cos(Im z) + i⋅sin(Im z))

where Re z and Im z are the real and imaginary parts of z,
respectively.

exportToMetafile
exportToMetafile(fn) creates a Windows Enhanced Metafile
(EMF) file with filename fn, a fully qualified file name with
extension ".emf", of the current 2D scene.

Example: exportToMetafile(fileSaveDialog(0))

exportToSVG
exportToSVG(fn) creates a Scalable Vector Graphics (SVG)
1.1 file with filename fn, a fully qualified file name with
extension ".svg", of the current 2D scene.

Example: exportToSVG(fileSaveDialog(0))

Please notice that any coloured planes and pixmaps will not
be saved in the SVG file, due to their bitmap nature.

extractFileDrive
extractFileDrive(s), where s is a string representing a file
name, returns the drive of the file name.

For example, extractFileDrive("C:\WINDOWS\notepad.exe")
returns "C:".

extractFileExt
extractFileExt(s), where s is a string representing a file name,
returns the file extension of the file name, including the
period.

For example, extractFileExt("C:\WINDOWS\notepad.exe")
returns ".exe".

extractFileName
extractFileName(s), where s is a string representing a file
name, returns the pure file name of s without the path.

For example, extractFileName("C:\WINDOWS\notepad.exe")
returns "notepad.exe".

extractFilePath
extractFilePath(s), where s is a string representing a file
name, returns the path of the file name.

For example, extractFilePath("C:\WINDOWS\notepad.exe")
returns "C:\WINDOWS\".

factor
factor(x) returns the prime factorization (decomposition) of
the integer x ≥ 2.

factors
factors(x) returns the unique vector of prime factors (sorted
by increasing magnitude) of the integer x ≥ 2.

fibonacci
fibonacci(n) returns the nth Fibonacci number. fibonacci(0)
= 0, fibonacci(1) = 1, fibonacci(2) = 1, fibonacci(n) = fibonac-
ci(n − 1) + fibonacci(n − 2).

fileExists
fileExists(s) returns True if the file s (a string) exists, and
False otherwise.

fileOpenDialog
fileOpenDialog(0) displays a file open dialog and returns the
chosen file name.

fileSaveDialog
fileSaveDialog(0) displays a file save dialog and returns the
chosen file name.

fillMatrix
fillMatrix(m, n, x) returns the m×n matrix with all entries
equal to x.

filter
filter(S, var, expr) returns the subset of the set S whose
elements satisfy the boolean expression expr, a string con-
taining a boolean expression in one variable, var.

Examples: filter([1, 100], "n", "isPrime(n)") = { 2, 3, 5, 7, 11,
13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,
83, 89, 97 }

filter(v, var, expr) returns the vector v where all elements
not satisfying expr are removed.

find
find(s) lists all identifiers (variables and functions) contain-
ing the string s in their name or description.

flattenStruct
flattenStruct(str) flattens the structure str, i.e. incorporates
the members of the substructures into the root of str.

Example:

createStruct("date", date(0), "time", time(0))

date:year: 2010
date:month: 6
date:day: 23
date:weekOfYear: 25
date:dayOfYear: 174
date:dayOfWeek: 3
time:hour: 15

AlgoSim 2.0 User’s Guide

 79/110

time:minute: 21
time:second: 45
time:millisecond: 560

flattenStruct(ans)

year: 2010
month: 6
day: 23
weekOfYear: 25
dayOfYear: 174
dayOfWeek: 3
hour: 15
minute: 21
second: 55
millisecond: 131

floor
⌊x⌋ = floor(x) returns the largest integer smaller than or
equal to x, i.e. rounds x to the nearest integer in the direction
of -∞.

fmt
fmt(S) returns the string S with variable placeholders re-
placed by the corresponding variable values. A placeholder
has the form "&ident" (without the quotation marks) where
"ident" is the valid identifier of an existing variable. "&&" will
produce a single ampersand character.

Example: fmt("The radio is &π.") will return "The radio is
3.14159265359."

frac
frac(x) = x − trunc(x) returns the fractional part of x.

FresnelC
FresnelC(x) is the Fresnel cosine integral.

FresnelC(x) = ∫cos(t^2)dt from 0 to x.

Example: spiral ≔ createImage("❨FresnelC(t), FresnelS(t)❩",
"t", [-10, 10, 0.01])
 drawLines("spiral")

FresnelS
FresnelS(x) is the Fresnel sine integral.

FresnelS(x) = ∫sin(t^2)dt from 0 to x.

Example: spiral ≔ createImage("❨FresnelC(t), FresnelS(t)❩",
"t", [-10, 10, 0.01])
 drawLines("spiral")

gammaFunction
gammaFunction(x) is the gamma function evaluated at x. x
must lie within]-1, 0[∪]0, ∞].

gcd
gcd(m, n) returns the greatest common divisor of the inte-
gers m and n, that is the greatest number that divides both m
and n.

Example: gcd(8, 20) = 4.

If gcd(m, n) = 0, m and n are said to be coprime, or relatively
prime.

getClipboardText
getClipboardText(0) returns the current textual content of
the Windows clipboard, if it exists.

getCol
getCol(M, n) returns the nth column of the real or complex
matrix M as a vector.

getCPUBrandString
getCPUBrandString(0) returns the CPU's brand string, e.g.
"Intel(R) Pentium(R) D CPU 2.80GHz".

getCPUFeatureSet
getCPUFeatureSet(0) returns the set of (the strings identify-
ing) the CPU's features, e.g. { "FPU", "MMX", "SSE", "SSE2",
"SSE3", "HT", "x64" }.

getCPUFeatureString
getCPUFeatureString(0) returns a comma-separated string of
the CPU's features, e.g. "FPU, MMX, SSE, SSE2, SSE3, HT, x64".

getCPUInfo
getCPUInfo(0) returns a structure containing information
about the CPU running AlgoSim. The fields are vendor, mod-
el, brandString, and features. Model is by itself a structure
containing the fields family, model, and stepping, as integers.
All other fields are strings.

getCPUModel
getCPUModel(0) returns the three-dimensional vector con-
taining the CPU's family, model, and stepping, respectively.

getCPUVendor
getCPUVendor(0) returns the CPU vendor, e.g. "GenuineIn-
tel".

getDateCorrespondingToDayOfYear
getDateCorrespondingToDayOfYear(Y, n) returns the date
and time structure corresponding to the zeroth millisecond
of the nth day of the year Y.

Example:

getDateCorrespondingToDayOfYear(2010, 100)

year: 2010
month: 4
day: 10
weekOfYear: 14
dayOfYear: 100
dayOfWeek: 6
hour: 0
minute: 0
second: 0
millisecond: 0

getDateCorrespondingToWeekOfYear
getDateCorrespondingToWeekOfYear(Y, n) returns the date
and time structure corresponding to the zeroth millisecond
of the nth week of the year Y.

Example:

getDateCorrespondingToWeekOfYear(1987, 50)

year: 1987
month: 12
day: 7
weekOfYear: 50
dayOfYear: 341
dayOfWeek: 1
hour: 0
minute: 0
second: 0
millisecond: 0

getDigit
getDigit(x, n) returns the nth digit of the integer (part of) x.

getDir
getDir(0) returns the current working directory.

AlgoSim 2.0 User’s Guide

80/110

getGenerator
Internal function: getGenerator(S) returns the generator
string of the set S.

getHsl
getHsl(c) returns a vector with the H, S, and L coordinates of
the colour code c.

getHsv
getHsv(c) returns a vector with the H, S, and V coordinates of
the colour code c.

getNextSpecificDayOfWeek
getNextSpecificDayOfWeek(D, d) returns the time and date
structure corresponding to the firsts day d (1 = monday, ..., 7
= sunday) after the date and time given by the date and time
structure D.

getNextSpecificDayOfWeek(D, d, n) returns the time and date
structure corresponding to the firsts day d (1 = monday, ..., 7
= sunday) after the date and time given by the date and time
structure D plus n entire weeks.

Example:

getNextSpecificDayOfWeek(encodeDate(2010, 06, 23), 7)

year: 2010
month: 6
day: 27
weekOfYear: 25
dayOfYear: 178
dayOfWeek: 7
hour: 0
minute: 0
second: 0
millisecond: 0

getOperatorTable
getOperatorTable(0) returns the currently loaded operator
table.

getParameter
getParameter(s) return the system parameter named s, a
string. The returned value depends on s, but may be a string,
a real number, or a boolean.

s may be any of the following strings:

xmin - the logical left limit of the 2D visualisation window
(real number).
xmax - the logical right limit of the 2D visualisation window
(real number).
ymin - the logical lower limit of the 2D visualisation window
(real number).
ymax - the logical upper limit of the 2D visualisation window
(real number).
fullscreen - the AlgoSim main window is in full-screen mode
(boolean).
complex mode - complex mode is on (boolean).
true sets - "true sets" mode is on (boolean).
anti-aliasing - anti-aliasing is active in the 3D visualisation
window (boolean).
3d lighting - realistic 3d lighting is active in the 3D visualisa-
tion window (boolean).
screen width - the width of the desktop in pixels (real num-
ber).
screen height - the height of the desktop in pixels (real num-
ber).
path - the path of AlgoSim.exe (string).
RTE installed - Rejbrand Text Editor is installed (boolean).
RTE path - the path of Rejbrand Text Editor (string).
winver - the version of Windows (string).

Windows major version - the major version number of Win-
dows (real number).
Windows minor version - the minor version number of
Windows (real number).
Windows build number - the build number of Windows (real
number).
computer name - the computer's name (string).
user name - the active Windows user's name (string).
CPU vendor - the CPU vendor (string).
CPU brand string - the CPU brand string (string).
CPU feature string - the CPU feature string (string).
ver - AlgoSim version (string).
RTE ver - the version of Rejbrand Text Editor (string).
AlgoSim common directory - the path of the AlgoSim Pro-
gram Files directory (string)
AlgoSim user directory - the local user's AlgoSim directory
(string)

In addition, getParameter("system metrics", n) is a wrapper
for the GetSystemMetrics Windows API function.

getParameter("handle", str) returns window handles
(HWNDs) depending on the string str. Possible values of str
are

"application" - the handle of the main AlgoSim window.
"window" - the handle of the main AlgoSim window.
"console" - the handle of the console.
"v2d" - the handle of the 2D visualisation control.
"v3d" - the handle of the 3D visualisation control.
"pixmaps" - the handle of the pixmap viewer.
"identifiers" - the handle of the Identifiers list box.
"broadcast" - HWND_BROADCAST
"desktop" - HWND_DESKTOP

getProgramLocations
getProgramLocations(0) returns a list of the directories in
which AlgoSim programs (*.prg files) are located. Typically
there is one (high-security) directory common to all users of
the computer, and one specific to the current user.

getRgb
getRgb(c) returns a vector with the R, G, and B coordinates of
the colour code c.

getRow
getRow(M, n) returns the nth row of the real or complex
matrix M as a vector.

getStructMemberFromIndex
getStructMemberFromIndex(str, n) returns the value of the
nth member of the structure str.

Example:

createStruct("firstName", "Andreas", "lastName", "Rejbrand",
"yearOfBirth", 1987, "IQ", ∞)

firstName: Andreas
lastName: Rejbrand
yearOfBirth: 1987
IQ: ∞

getStructMemberFromIndex(ans, 2) = "Rejbrand"

getStructNameFromIndex
getStructNameFromIndex(str, n) returns the name (that is,
the identifier, not the associated value) of the nth (1, 2, ...)
member of the structurer str, as a string. To obtain the value,
use getStructMemberFromIndex(str, n) instead.

getStructNumMembers
getStructNumMembers(str) returns the number of members
of the structure str.

AlgoSim 2.0 User’s Guide

 81/110

Example:

createStruct("firstName", "Andreas", "lastName", "Rejbrand",
"yearOfBirth", 1987, "IQ", ∞)

firstName: Andreas
lastName: Rejbrand
yearOfBirth: 1987
IQ: ∞

getStructNumMembers(ans) = 4

getTickCount
getTickCount(0) returns the (approximate) number of milli-
seconds since system power-on (modulo 2^32). Good for
performance testing of time-synchronization inside loops.

getViewAsBitmap
getViewAsBitmap(0) returns the current 2D visualization
window as a pixmap.

getViewAsBitmap(w, h) returns the current 2D visualization
window as a w×h pixmap.

getViewAsBitmap3
getViewAsBitmap3(0) returns the current 3D visualization
window as a pixmap.

getViewAsBitmap3(w, h) returns the current 3D visualiza-
tion window as a w×h pixmap.

GramSchmidt
Let A be a m×n real matrix, and consider the n columns as
vectors in ℝ^m. Then GramSchmidt(A) returns the m×n
matrix whose columns are the vectors that are produced by
the Gram-Schmidt orthonormalisation algorithm. In particu-
lar, if A is a square n×n matrix of full rank, then Gram-
Schmidt(A) will be orthogonal, i.e. the columns of A will
constitute an orthonormal basis of ℝ^n.

harmonicNumber
harmonicNumber(n) returns the nth harmonic number. n is
a positive integer.

heaviside
heaviside(x) = 1 if x > 0, and heaviside(x) = 0 otherwise.

heaviside is the Heaviside unit step function.

hermitePhys
hermitePhys(n, x) returns the physicist's Hermite polynomi-
al of degree n evaluated at the point x, a real number.

hermiteProb
hermiteProb(n, x) returns the probabilist's Hermite polyno-
mial of degree n evaluated at the point x, a real number.

hoursBetween
hoursBetween(t1, t2) returns the number of hours between
the date and time structures t1 and t2.

hsl
hsl(h, s, l) returns the colour code for the colour with the HSL
coordinates h, s, and l.

hsv
hsv(h, s, v) returns the colour code for the colour with the
HSV coordinates h, s, and v.

hsvToRgb
hsvToRgb(h, s, v) returns the three-dimensional RGB coordi-
nates of the colour given by the HSV coordinates h, s, and v,
as a real vector.

identExists
identExists(str) returns true if there exists a variable named
str (a string), and false otherwise.

identifyProblems
identifyProblems(0) will perform an automatic search for
potential problems in the current AlgoSim session. Among
other things, identifyProblems will verify that

 * no fundamental constant (π, e, i, true, false, ...) has been
removed or redefined.
 * the operator table not has been altered so much that sim-
ple expressions like 4 + (3 ⋅ 5!)/2 cannot be evaluated.
 * there is not a variable foo that has the same name as a
function or program foo().
 * the operator table ops.asd and the constants table con-
stants.asd are not missing.
 * the system font DejaVu Sans Mono is installed.

If a problem can be resolved automatically (with no risk of
loss of data), identifyProblems will automatically try to fix
the problem. Otherwise, the function will return instructions
how to manually resolve the issue.

identity
identity(a1, a2, ..., an) returns an (but all arguments are
evaluated, from left to right).

Thus

 a1; a2 = identity(a1, a2) = a2

The semicolon operator is often used in for loops.

identityMatrix
identityMatrix(n) returns the n-dimensional identity matrix,
i.e. the n×n square matrix with all entries equal to δ(m, n)
where δ is the Kronecker delta function.

ifThen
ifThen(b, X1, X2) returns X1 if b = true, and X2 otherwise.

Example: ifThen(isOdd(n), "n is odd", "n is even")

Im
Im(z) returns the imaginary part of a complex number z. If x
is a real number, Im(x) = 0.

include
include(s, x) includes the element x into the set named s, a
string. x might be any element that can be included in a set,
i.e. a real or complex number, vector, matrix, string, or
pixmap.

indexOf
indexOf(v, x) returns the index of the first occurrence of the
number x in the vector v. If x does not occur in v, indexOf(v,
x) = -1.

indexOf(M, x) returns the index of the first occurrence of the
number x in the matrix M. If x does not occur in M, in-
dexOf(M, x) = ❨-1, -1❩.

indexOf(tbl, str) returns the index of the first occurrence of
the string str in the table tbl. If str does not occur in tbl,
indexOf(tbl, str) = ❨-1, -1❩.

indexOf(pm, clr) returns the index of the first occurrence of
the pixel colour clr in the pixmap pm. If clr does not occur in
pm, indexOf(pm, clr) = ❨-1, -1❩.

info
info(s) displays s as an informational message. s is a string.

AlgoSim 2.0 User’s Guide

82/110

inputDialog
inputDialog(0) displays a multi-line text input window, and
returns the input string (using CRLF as line breaks).

inputParams
inputParams(s1, ..., sN) displays a parameter input dialog
box. s1, ..., sN are valid identifiers of existing variables, the
values of which are to be adjusted.

Example (from waveSim.prg):

λ1 ≔ 3
λ2 ≔ 4
ν1 ≔ 0.6
ν2 ≔ 0.4
A1 ≔ 2
A2 ≔ 2.3
inputParams("λ1", "λ2", "ν1", "ν2", "A1", "A2")

intGraph
intGraph(S) returns the graph of the primitive function F of f
with graph S = { ❨x, f(x)❩ } such that F(xmin) = 0, where xmin
is the lowest (or, rather, first) x-value in S.

Example: gauss ≔ createGraph("exp(-x^2)", "x", [-10, 10,
0.01])
 erf ≔ intGraph(gauss)
 drawSet("erf")

inv
inv(x) returns the multiplicative inverse of x, a real number,
a complex number, or a real or complex matrix, i.e. inv(x) =
x^(-1) when applicable.

Example: inv(5) = 0.2

invertCase
invertCase(str) returns the string str with all characters
case-inverted.

Example:

invertCase("this is a brief text. a very brief text, actually.") =
"THIS IS A BRIEF TEXT. A VERY BRIEF TEXT, ACTUALLY."

isEven
isEven(x) returns True if x is even, and False otherwise. x is
any integer.

Examples: isEven(5) = False
 isEven(10) = True

isEven(expr, var, domain) returns True if the expression
expr in the single variable var restricted to the domain do-
main is an even function, and False otherwise.

Examples: isEven("sin(x)", "x", [0, 10, 0.1]) = False
 isEven("x⋅sin(x)", "x", [0, 10, 0.1]) = True

isLeapYear
isLeapYear(year) returns true if year is a leap year, and false
otherwise.

Per definition,

isLeapYear(year) = (year mod 4 = 0) ∧ ((year mod 100 ≠ 0) ∨
(year mod 400 = 0))

Example:

isLeapYear(2010) = false

isMagicSquare
isMagicSquare(M) returns true iff the real matrix M is a
magic square, i.e. a square matrix such that the sum of all
elements is equal in every row, column, and diagonal. The
magic square need not be normal.

Se also: isNormalMagicSquare.

isNormalMagicSquare
isNormalMagicSquare(M), where M is a real matrix, returns
true if and only if M is a normal magic square, i.e. a n×n magic
square containing every integer between 1 and n^2 (exactly
once).

Thus

 isNormalMagicSquare(M) = isMagicSquare(M) ∧ isNor-
malSquare(M)

isNormalPanmagicSquare
isNormalPanmagicSquare(M), where M is a real matrix,
returns true if and only if M is a normal panmagic (or, diabol-
ic) square, i.e. a N×N panmagic square in which every integer
from 1 to N^2 occurs (exactly once).

Thus,

isNormalPanmagicSquare(M) = isPanmagicSquare(M) ∧
isNormalSquare(M).

isNormalSemimagicSquare
isNormalSemimagicSquare(M), where M is a real matrix,
returns true if and only if M is a normal semi-magic square,
i.e. a M×N semi-magic square in which every integer between
1 and N^2 occurs (exactly once).

Thus,

isNormalSemimagicSquare(M) = isSemimagicSquare(M) ∧
isNormalSquare(M).

isNormalSquare
isNormalSquare(M), where M is a real matrix, returns true if
and only if M has format n×n and contains every integer
between 1 and n^2 (exactly once).

isOdd
isOdd(x) returns True if x is odd, and False otherwise. x is
any integer.

Examples: isOdd(5) = True
 isOdd(10) = False

isOdd(expr, var, domain) returns True if the expression expr
in the single variable var restricted to the domain domain is
an odd function, and False otherwise.

Examples: isOdd("sin(x)", "x", [0, 10, 0.1]) = True
 isOdd("x⋅sin(x)", "x", [0, 10, 0.1]) = False

isPanmagicSquare
isPanmagicSquare(M), where M is a real matrix, returns true
if and only if M is a panmagic (or, diabolic) square. A pan-
magic square is a N×N magic square such that also every
broken diagonal sums up to the magic constant of the square.
The panmagic square need not be a normal magic square.

See also: isNormalPanmagicSquare

isPrime
isPrime(n) returns True if n is a prime number, and False
otherwise.

AlgoSim 2.0 User’s Guide

 83/110

isSemimagicSquare
isSemimagicSquare(M), where M is a real matrix, returns
true if and only if M is a semi-magic square, i.e. a N×N matrix
such that the sum of all elements in every row and column
equals the same number, the so-called "magic number" of the
semi-magic square. The diagonals need not sum up to the
magic number (if they do, the square is also a magic square).

See also isNormalSemimagicSquare, isMagicSquare, and
isNormalMagicSquare.

killSound
killSound(0) stops all currently playing waveform sounds
associated with the AlgoSim process.

kronecker
kronecker(x, y) is the Kronecker δ function, i.e. kronecker(x,
y) = 1 if x = y, and kronecker(x, y) = 0 if x ≠ y.

lcm
lcm(m, n) returns the least common multiple of the integers
m and n, that is the smallest number divisible by both m and
n.

Example: lcm(12, 64) = 192.

length
length(s) returns the length (that is, the number of charac-
ters) in the string s.

leviCivita
leviCivita(a1, a2, ..., aN) returns 1 if (a1, a2, ..., aN) is an even
permutation of the N first positive integers, -1 if (a1, a2, ...,
aN) is an odd permutation of the N first positive integers, and
0 otherwise. Every ak must be an integer between 1 and N.

listDir
listDir(0) lists the contents of the current working directory.

listFonts
listFonts(0) returns a list (a one-column table) of all installed
fonts.

Examples: tableRows(listFonts(0)) returns (more or less)
the number of installed fonts.

listFunctions
listFunctions(1) lists all declared functions, built-in or de-
fined at runtime (user-defined).

listNamedColours
listNamedColours(0) returns a list of all named colours in
AlgoSim. These colour identifiers may be used in CSS styles.

listVars
listVars(1) lists all variables.

ln
ln(x) is the natural logarithm, i.e. the inverse of the exponen-
tial function exp(x). x is a real or complex number.

For a complex number z,

ln(z) = ln(|z|) + i⋅arg(z)

where the argument arg(z) ∈]-π, π] and i is the imaginary
unit, i.e. i^2 = -1.

loadDictionary
loadDictionary(s) loads the dictionary file with file name s.

Example: loadDictionary("data/english")

loadMatrixFromFile
loadMatrixFromFile(s) loads the file with file name s, which
must be a matrix saved in AlgoSim, and returns the real or
complex matrix.

loadPixmapFromFile
loadPixmapFromFile(s) loads a AlgoSim (*.asd) or Windows
(*.bmp) pixmap from a file. s is a fully-qualified name of the
file. The pixmap is returned.

loadPointSetFromFile
loadPointSetFromFile(fn) returns the point set saved in the
.asd file with name fn, a string containing a fully-qualified file
name.

loadSoundFromFile
loadSoundFromFile(s) returns the sound in the file with
name s. s must be a fully-qualified file name of an uncom-
pressed WAV file.

loadStructFromFile
loadStructFromFile(fn) returns the structure saved in the file
fn, a valid file name.

loadTableDataFromTextFile
loadTableDataFromTextFile(s) loads a AlgoSim table from a
file. s is the fully-qualified name of the file. The file is re-
quired to contain only the textual part of the table, and thus
no information regarading the cell's formatting. The table is
returned.

loadTableFromFile
loadTableFromFile(s) loads a AlgoSim table from a file. s is
the fully-qualified name of the file. The table is returned.

loadTextFromFile
loadTextFromFile(S) returns the string containing the text in
the file named S.

loadVectorFromFile
loadVectorFromFile(s) loads the file with file name s, which
must be a vector saved in AlgoSim, and returns the real or
complex vector.

log
log(x) is the 10-logarithm of x.

magicSquare
magicSquare(N) returns a normal magic square of order N,
i.e. a N×N matrix of the integers 1, 2, ..., N^2 such that the
sum of the elements of each row, column, and diagonal
equals the same number, the so called magic number of the
matrix. A matrix has exactly two diagonals, in the usual
sense.

The magic constant is always M = n(n^2 + 1) / 2. There is no
magic square of order 2.

AlgoSim uses different algorithms when computing magic
squares of

 1) odd order (N = 2k + 1),
 2) double even order (N = 4k), and
 3) singly even order (N = 4k + 2).

In general, the magic square of order N is not unique; Al-
goSim will only produce *one* magic square of that order.

matCols
matCols(M) returns the number of columns in the real or
complex matrix M.

AlgoSim 2.0 User’s Guide

84/110

matRows
matRows(M) returns the number of rows in the real or
complex matrix M.

matToPointSet
matToPointSet(mat), where mat is a n×2 (or n×3) real ma-
trix, returns the set of n points in R^2 (or R^3), in which the
coordinates of point i are the elements of the ith row of mat.

Example: Given a matrix

 ⎛ 1 2 ⎞
 ⎜ 3 5 ⎟
A = ⎜ 2 5 ⎟,
 ⎜ 2 7 ⎟
 ⎝ 4 6 ⎠

matToPointSet(A) = {❨1, 2❩, ❨3, 5❩, ❨2, 5❩, ❨2, 7❩, ❨4, 6❩}.

matToSet
matToSet(M) returns the set of all entries in the m×n matrix
M.

matToTable
matToTable(M) returns the table with entries from the
matrix M, at corresponding places.

max
max(a1, a2, ..., an) returns the greatest number of a1, a2, ...,
and an.

max(v) returns the maximum (greatest) component in the
real vector v.

maxNorm
maxNorm(v) returns the ∞-norm of the real or complex
vector v, i.e. the component of v with greatest modulus
(length).

mean
mean(a1, a2, ..., an) returns the arithmetical mean of the real
or complex numbers a1, a2, ..., and an.

sum(v) returns the arithmetical mean of all components in
the real or complex vector v.

messageBox
messageBox(str) displays a message box with the string str.

millisecondsBetween
millisecondsBetween(t1, t2) returns the number of millisec-
onds between the date and time structures t1 and t2.

min
min(a1, a2, ..., an) returns the smallest number of a1, a2, ...,
and an.

max(v) returns the minimum (smallest) component in the
real vector v.

minutesBetween
minutesBetween(t1, t2) returns the number of minutes
between the date and time structures t1 and t2.

mod
mod(n, m) returns the remainder when the integer n is
divided by the integer m.

Example: mod(12, 5) = 2

For general arguments x and y, mod(x, y) adds an integer
multiple of y to x so that the result lies within [0, y].

Example: mod(14.71, π/2) = 0.572833058846

modSq
modSq(x) returns the modulus squared of x, if x is a real
number, a complex number, a real vector or a complex vec-
tor.

monthsBetween
monthsBetween(d1, d2) returns the number of months
between the date structures d1 and d2.

Example:

d1 ≔ encodeDate(2010, 06, 19)

year: 2010
month: 6
day: 19
weekOfYear: 24
dayOfYear: 170
dayOfWeek: 6

d2 ≔ date(0)

year: 2010
month: 6
day: 23
weekOfYear: 25
dayOfYear: 174
dayOfWeek: 3

monthsBetween(d1, d2)

0.131416837782

moveFile
moveFile(f1, f2) moves the file f1 (a string containing a valid
file name) to f2 (a string containing a valid file name).

multiMagicSquareOrder
multiMagicSquareOrder(M) returns the M-order of the
square real matrix M. A multi-magic square of M-order k is a
N×N matrix such that M^^l is a magic square ∀ l ∈ {1, 2, ..., k},
where M^^l is defined by (M^^l)_ij = (M_ij)^l, i.e. every
element in M^^l is obtain by raising the corresponding
element of M to the power of l.

Every magic square has M-order at least 1 as a multi-magic
square. A non-magic square has M-order 0, but it might still
be a semi-magic square.

nextPrime
nextPrime(n) returns the smallest prime number greater
than or equal to n.

norm
norm(v) returns the 2-norm of the vector v = ❨a1, a2, ..., an❩,
i.e. the real number

norm(v) = sqrt(v⋅v) = (|a1|^2 + |a2|^2 + ... + |an|^2)^(1/2).

note
note(n) plays the MIDI tone n ∈ [0, 127] (an integer) using
the current musical instrument and full intensity (127).

note(n, v) plays the MIDI tone n ∈ [0, 127] using the current
musical instrument and the intensity v ∈ [0, 127].

Example: note(60)

noteOff
noteOff(n) disables the tone n ∈ [0, 127] (an integer).

noteOff(n, v) disables the tone n ∈ [0, 127] (an integer) with
the intenisty v ∈ [0, 127].

AlgoSim 2.0 User’s Guide

 85/110

Example: noteOff(60, 127) if the current instrument requires
the notes to be disabled manually.

notes
notes(S) plays the set of MIDI notes S. Each element in S is an
integer in [0, 127], i.e. a valid MIDI note. The notes are played
simultaneously and using the current instrument and full
intensity (127).

Example: notes({50, 60, 70})

notesOff
notesOff(S) disables the MIDI notes in S, if necessary. See
notes for more information.

Example: notesOff({50, 60, 70}) if the current instrument
requires the notes to be disabled manually.

now
now(0) returns a structure with the current date and time.
The structure contains the members year, month, day,
weekOfYear, dayOfYear, dayOfWeek, hour, minute, second,
and millisecond.

Example:

now(0)

year: 2010
month: 6
day: 23
weekOfYear: 25
dayOfYear: 174
dayOfWeek: 3
hour: 14
minute: 7
second: 30
millisecond: 534

numberVector
If v is a N-dimensional vector and a an integer, then num-
berVector(v, a) returns a N×2 matrix where the first element
of the nth row (indexed from 0) is n + a and the second
element is v_(n + 1).

numberVector(v) = numberVector(v, 0).

Example: primes ≔ sieveOfEratosthenes(10)
 numberVector(primes)

OPADD
a + b = OPADD(a, b) returns the sum of a and b. a and b can
be real or complex numbers, vectors, or matrices, or strings.

OPAND
∧ is the logical and operator.

Truth table for p ∧ q:

∧ 1 0
1 1 0
0 0 0

OPAPPROX
Internal function used to check approximate equality. Do not
use explicitly.

OPASSIGN
x ≔ y assigned the value returned by the expression y to the
AlgoSim variable x.

The left operand is raw, and thus will be treated as a string.

OPASTERISK
z* returns the complex conjugate of the complex number z.

M* returns the transpose of the real matrix M.

M* returns the conjugate transpose (/Hermitian/ conju-
gate/transpose, or adjoint) of the complex matrix M, i.e. the
transpose of M with all entries replaced by their complex
conjugate.

OPBAR
m | n returns True if m divides n, i.e. if there exists an integer
x such that n = xm, and False otherwise.

(u|v) returns the scalar (dot) product between the n-
dimensional real or complex vectors u and v. (u|v) = u⋅v.

OPCROSSMUL
v1×v2 returns the cross product of the two-dimensional real
or complex vectors v1 and v2, i.e. a vector perpendicular to
both v1 and v2, with norm (length) equal to |v1||v2|sin θ
where θ is the angle between v1 and v2, and such that v1, v2,
and v1×v2 is a right-handed system.

Example: If a plane Π ∈ R^3 is generated* by a point r and
two vectors v1 and v2, the plane's normal vector is (up to a
scaling factor) equal to v1×v2.

* Π = {(x, y, z) ∈ R^3: (x, y, z) = r + s v1 + t v2; s, t ∈ R}

OPDEGREES
x≧ = OPDEGREES(x) returns x⋅(π/180), i.e. the angle ex-
pressed in radians (when x is expressed in degrees).

Example: sin(90°) = 1

OPDIV
a / b = OPDIV(a, b) returns the quotient when a is divided by
b. a and b are real or complex numbers. If b is a number, a
might also be a vector or matrix; this is equivalent to multi-
plying (i.e., scaling) the vector or matrix by a factor of 1 / b.

OPEQUALS
a = b, or OPEQUALS(a, b), returns True if a and b are identical
objects, and False otherwise.

a and b might be real or complex numbers, vectors, matrices,
pixmaps, sounds, tables, strings, booleans, or sets.

OPEXP
a↑b = OPEXP(a, b) = a⋅10^(b)

For example, the rest mass of an electron is 9.10938215↑-31
and the mass of the sun is 1.9891↑30.

OPFACT
n! = OPFACT(n) returns the factorial of the natural number n,
i.e. the number n⋅(n−1)⋅...⋅1.

OPGREATEROREQUAL
a ≥ b, or OPGREATEROREQUAL(a, b), returns True if a > b or
if a = b, and False otherwise.

OPGREATERTHAN
a > b, or OPGREATERTHAN(a, b), returns False if a is a small-
er real number than b, and True otherwise.

OPIN
x ∈ S returns True if the element x is a member of the set S,
and False otherwise.

OPINDEX
v_i returns the ith component of the real or complex vector i.

AlgoSim 2.0 User’s Guide

86/110

M_❨i, j❩ returns entry ❨i, j❩ in the real or complex matrix M.

s_i returns the ith character in the string s.

OPINTERSECT
A ∩ B returns the intersection between the sets A and B.

OPINTERVAL
[a, b] returns the set of all integers between a and b, inclu-
sively.

[a, b, δ] returns the set of all real numbers a, a + δ, a + 2δ, ...
less than or equal to b.

OPLESSOREQUAL
a ≤ b, or OPLESSOREQUAL(a, b), returns True if a < b or if a =
b, and False otherwise.

OPLESSTHAN
a < b, or OPLESSTHAN(a, b), returns True if a is a smaller real
number than b, and False otherwise.

OPMAPSTO
args ↦ expr returns the function with the parameter list args
(a comma-separated list of identifiers as a string) and ex-
pression expr (a string representing a valid expression,
possible including the identifiers of args).

A function is represented by a number. Assign this number to
a valid identifier, to give the function a symbol.

Examples: sq ≔ "x" ↦ "x^2"
 geoMean ≔ "a, b" ↦ "sqrt(a⋅b)"

OPMEMBER
OPMEMBER(struct, "mem") = struct:mem returns the value
of the member "mem" in the structure "struct".

Example:

date(0)

year: 2010
month: 6
day: 23
weekOfYear: 25
dayOfYear: 174
dayOfWeek: 3

date(0):day

23

date(0):dayOfWeek

3

OPMINUS
- is unary minus. Thus -x is equivalent to 0 − x, where − is
binary minus (the subtraction operator) and x is a real or
complex number, vector or matrix.

OPMUL
a⋅b = OPMUL(a, b) returns the product of a and b. a and b can
be real or complex numbers, vectors, or matrices. In the case
of vectors, the scalar (dot) product is returned, i.e. a real or
complex number. Both vectors must have the same dimen-
sion (length). Two matrices, with formats r×m and m×c,
respectively, may be multiplied, according to the rules of
matrix multiplication, and the result is a r×c matrix. If a is a
natural number and b a string, the product is the string
added to itself b times.

OPNAND
OPNAND is the logical nand (not and) operator.

Truth table for OPNAND(p, q):

NAND 1 0
1 0 1
0 1 1

OPNGISSA
b ≕ a assignes the value b to a.

Example:

5 ≕ a

is equivalent to

a ≔ 5.

OPNOR
OPNOR is the logical nor (not or, neither) operator.

Truth table for OPNOR(p, q):

NOR 1 0
1 0 0
0 0 1

OPNOT
¬ is logical negation.

¬q returns True if q is False, and False if q is True.

OPNOTEQUAL
a ≠ b, or OPNOTEQUAL(a, b), returns False if a and b are
identical objects, and True otherwise.

a and b might be real or complex numbers, vectors, matrices,
pixmaps, sounds, tables, strings, booleans, or sets.

OPNOTIN
a ∉ S = ≦(a ∈ S) returns true iff the value a is not a member of
the set S.

OPNULL
The null operation. Should never be used.

OPOR
∨ is the logical or operator.

Truth table for p ∨ q:

∨ 1 0
1 1 1
0 1 0

OPORTHOGONAL
m n returns True if the integers m and n are relatively
prime (that is, if gcd(m, n) = 1), and False otherwise.

v1 v2 returns True if the n-dimensional vectors v1 and v2
are orthogonal w.r.t. the standard inner product of R^n (or
E^n), that is if their scalar (dot) product (v1|v2) = v1⋅v2
vanishes.

OPPERCENT
x % = OPPERCENT(x) = x / 100. For instance, 50 % = 0.50.

OPPERMILLE
x ‰ = OPPERMILLE(x) = x / 100. For instance, 100 ‰ =
0.100.

AlgoSim 2.0 User’s Guide

 87/110

OPPOWER
a^b = OPPOWER(a, b) returns a raised to the power of b. If a
and b are complex numbers,

a^b = exp(b⋅ln(a)) (1)

as long as a ≠ 0. (If we are working with real numbers only, it
is necessary that a > 0 in most cases.)

If b is a positive number, a^b = a⋅a⋅...⋅a, where the factor a
occurs exactly b times. a^0 = 1 (the empty product) unless a
= 0, for 0^0 is undefined. 0^b = 0 for all non-zero numbers b.
a^-b = 1/a^b, and a^(1/n), for a integer n, is the nth root of a,
i.e. one of the roots to the equation x^n = a. Furthermore, in
general, (x^a)^b = x^(ab).

For real numbers, the following applies to a^(1/n): If a > 0
and n is even, there are two roots, and the positive root is
returned (example: 16^(1/2) = 4). If a > 0 and n is odd, there
is only one root.

For complex numbers, the primary definition (1) is used to
compute most values. The principal branch of ln is utilized,
where the argument of a complex number lies within]-π, π].

OPSET
{ X1, X2, ..., Xn } returns the set of the elements X1, X2, ..., and
Xn, which might be real or complex numbers, vectors, matri-
ces, strings, or pixmaps, but not booleans, sounds, tables or
other sets.

OPSUB
a − b = OPSUB(a, b) returns the difference between a and b. a
and b can be real or complex numbers, vectors, or matrices.

OPUNION
A ∪ B returns the union of the sets A and B.

OPVECT
Create a vector or matrix.

❨a1, a2, ..., an❩ = OPVECT(a1, a2, ..., an) returns the n-
dimensional vector with real or complex coordinates ai, i=1,
2, ..., n.

❨v1, v2, ..., vm❩ = OPVECT(v1, v2, ..., vm) returns the n×m
real or complex matrix where the ith column is the vector vi,
i=1, 2, ..., m, and vi is a n-dimensional real or complex vector.

For instance, the two-dimensional unit matrix is ❨❨1, 0❩, ❨0,
1❩❩.

OPXOR
⊻ is the logical xor (exclusive or) operator.

Truth table for p ⊻ q:

⊻ 1 0
1 0 1
0 1 0

ord
ord(s), where s is a single character, i.e. a string of length
one, returns the Unicode codepoint (or, for the 128 first
characters, equivalently, the ASCII code) of s.

Example: ord("⊲") = 8882

parseOperators
parseOperators(s), where s is a string containing a valid
AlgoSim expression using operators, returns the expression
s, as a string, where all operators have been translated to
function calls using the default operator table.

Example: parseOperators("4⋅(x^2+4)!") will return
 OPMUL(4,OPFACT(OPADD(OPPOWER(x,2),4)))

playSound
playSound(s) plays the sound named s synchronically. s is a
string representing the valid identifier of an AlgoSim sound
object. playSound does not return until the playback of the
sound is complete.

pmAddSizeToEdges
pmAddSizeToEdges(pm, r, b, l, t) returns the pixmap pm with
r, b, l, and t black pixels added to the right, bottom, left, and
top, respectively.

pmBlend
pmBlend(pm1, pm2, x, y, t, opq) returns the pixmap pm1
with the pixmap pm2 added on top of it, with the pixel (x, y)
under its top-left pixel, using the pixel blend method t (an
integer), and the opacity opq ∈ [0, 1].

The following pixel blend methods can be used:

1. Normal
2. Average
3. Lighten
4. Darken
5. Add
6. Subtract
7. Distance
8. Negation
9. Exclusion
10. Multiply
11. Screen
12. SoftLight
13. HardLight
14. Overlay
15. Dodge
16. InvDodge
17. Burn
18. InvBurn
19. Reflect
20. InvReflect
21. Freeze
22. InvFreeze
23. Stamp
24. InvStamp
25. Cosine
26. Xor
27. And
28. Or
29. Red
30. Yellow
31. Green
32. Cyan
33. Blue
34. Magenta
35. Dissolve
36. PartialDissolve

pmContrast
pmContrast is not implemented in this version.

pmCreateGradientPixmap
pmCreateGradientPixmap(W, H, C1, C2, type) creates a W×H
pixmap containing a linear gradient from the colour C1 to the
colour C2. C1 and C2 are colour codes, and W, and H are
positive integers. If type is "horizontal", a horizontal gradient
is created. If type is "vertical", a vertical gradient is created.

Example: pmCreateGradientPixmap(100, 25, rgb(1, 0, 0),
rgb(0, 0, 0), "horizontal")

AlgoSim 2.0 User’s Guide

88/110

pmDistortHue
pmDistortHue(pm) changes in a random fashion the hue
component of each pixel by at most 10 degrees and returns
the result.

pmDistortHue(pm, shift) changes in a random fashion the
hue component of each pixel by at most shift degrees.

pmDistortRGB
pmDistortRGB(pm) applies a random distortion to the R, G,
and B components of each pixel separately, and returns the
result. Each R, G, and B component is shifted by -1, 0, or 1.

pmDistortRGB(pm, r) applies a random distortion to the R, G,
and B components of each pixel separately, and returns the
result. Each R, G, and B component is shifted by -r, -r + 1, ..., 0,
..., r - 1, or r. r is an integer between 1 and 255.

pmDistortSpace
pmDistortSpace(pm) applies a small random distortion to
the pixels of the pixmap pm, and returns the result. Specifi-
cally, each pixel will be moved -1, 0, or 1 pixels to the right
and -1, 0, or 1 pixels downwards (The distortion applies to
each pixel position once, from (0, 0), to (width - 1, height - 1)
in row-major order.)

pmDistortSpace(pm, r) moves each pixel a maximum of r
pixels to the left/right and a maximum of r pixels up-
wards/downwards. Hence, the default vale of r is 1.

pmEdgeDetection
pmEdgeDetection(pm), where pm is a pixmap, returns the
pixmap containing the grey-scaled edges of pm.

pmEdgeDetection(pm, "horizontal"), where pm is a pixmap,
returns the pixmap containing the grey-scaled edges of pm.
Only horizontal edges are detected.

pmEdgeDetection(pm, "vertical"), where pm is a pixmap,
returns the pixmap containing the grey-scaled edges of pm.
Only vertical edges are detected.

pmEmboss
pmEmboss(pm), where pm is a pixmap, returns the pixmap
with an embossed effect.

pmEmboss(pm, "horizontal"), where pm is a pixmap, returns
the pixmap with a horizontal embossed effect.

pmEmboss(pm, "vertical"), where pm is a pixmap, returns
the pixmap with a vertical embossed effect.

pmFixHue
pmFixHue(pm, hue) returns the pixmap pm with the hue of
all pixels set to the fixed value hue. The saturation and value
of each pixel is not affected.

pmFlipH
pmFlipH(pm) returns the pixmap pm reflected in the line x =
w / 2, where w is the width of the pixmap.

pmFlipV
pmFlipV(pm) returns the pixmap pm reflected in the line y =
h / 2, where h is the height of the pixmap.

pmFloodFill
pmFloodFill(pm, x, y, c) performs a flood-fill operation on the
pixmap pm and returns the result. x and y are non-negative
integers specifying the point of bucket splash-out, and c is
the colour code of the the paint.

pmGetRAMSize
pmGetRAMSize(pm) returns the amount of RAM, in bytes,
occupied by the pixmap pm.

pmGetRect
pmGetRect(pm, x0, x1, y0, y1) returns the rectangular region
x ∈ [x0, x1], y ∈ [y0, y1] of the pixmap pm.

pmHeight
pmHeight(pm) returns the height of the pixmap pm.

pmHSVAdjustment
pmHSVAdjustment(pm, Hmode, Hval, Smode, Sval, Vmode,
Vval) returns the pixmap pm whith the hue, saturation, and
value components of each pixel transformed separately
according to the component's Xmode and Xval (X = H, S, or V)
parameters.

Each Xmode can be either "fixed", "add", or "mul".

 * If Xmode is "fixed", each pixel's X component will be set to
Xval.
 * If Xmode is "add", each pixel's X component will be in-
creased by Xval, that is, its new value will be the sum of its
old value and Xval.
 * If Xmode is "mul", each pixel's X component will be multi-
plied by Xval, that is, its new value will be the product of its
old value and Xval.

Notice that the component identity operation is achieved
either by setting Xmode = "add" and Xval = 0 or by setting
Xmode = "mul" and Xval = 1.

Notice! The resulting saturation and value components are
finally truncated to [0, 1].

Examples: Let pm be a pixmap variable. Then

 pmHSVAdjustment(pm, "fixed", 0, "add", 0, "add", 0)

will return the pixmap pm where the hue of each pixel has
been set to 0 (red).

 pmHSVAdjustment(pm, "add", 180, "add", 0, "add", 0)

will return the pixmap pm where the hue of each pixel has
been shifted by 180 degrees.

 pmHSVAdjustment(pm, "add", 0, "mul", 0.5, "add", 0)

will return the pixmap pm where the saturation of each pixel
has been halved.

pmHSVCombine
Essentially, the pmHSVCombine function creates a pixmap
whose hue, saturation, and value components are taken from
three different pixmaps.

pmHSVCombine(H, S, V) creates a pixmap P such that

 * the hue component of pixel (i, j) in P is equal to the hue
component of (i, j) in H,
 * the saturation component of pixel (i, j) in P is equal to the
saturation component of (i, j) in S, and
 * the value component of pixel (i, j) in P is equal to the value
component of (i, j) in V.

The pixmaps H, S, and V need to have the same dimensions,
and P will also have these dimensions.

pmHSVSplit
Essentially, the pmHSVSplit function extracts the hue, satura-
tion, and value components of a pixmap.

pmHSVSplit(pm, h, s, v), where pm is a pixmap, creates three
new pixmaps, named h, s, and, v (which have to be strings

AlgoSim 2.0 User’s Guide

 89/110

representing valid identifiers), where h, s, and v are copies of
pm, but

 * h has all saturation and value components equal to unity,
 * s has all hue and value components equal to zero and unity,
respectively, and
 * v has all hue and saturation components equal to zero and
unity, respectively.

pmInvert
pmInvert(pm) returns the pixmap pm with all colours in-
verted. Thus the pixel (r, g, b) is replaced by (1−r, 1−g, 1−b)
in RGB coordinates. This maps, for instance,

white (1, 1, 1) -- black (0, 0, 0),
red (1, 0, 0) -- aqua (0, 1, 1),
green (0, 1, 0) -- fuchsia (1, 0, 1),
blue (0, 0, 1) -- yellow (1, 1, 0).

pmInvertLightness
pmInvertLightness(pm) returns the pixmap pm after the HSL
lightness (L) coordinate of each pixel has been inverted, that
is replaced by one minus the original value.

pmInvertValue
pmInvertValue(pm) returns the pixmap pm after the HSV
value (V) coordinate of each pixel has been inverted, that is
replaced by one minus the original value.

pmMöbius
pmMöbius(pm) applies a Möbius transform to the pixmap
pm, and returns the result.

pmNoise
pmNoise(pm) returns the pixmap pm with white random
pixel noise. Specifically, each pixel in the result has a 50 %
chance of being replaced with rgb(1, 1, 1).

pmNoise(pm, P) returns the pixmap pm with white random
pixel noise. Specifically, each pixel in the result has a P ∈ [0,
1] chance of being replaced with rgb(1, 1, 1).

pmNoise(pm, P, c) returns the pixmap pm with coloured
pixel noise. Specifically, each pixel in the result has a P ∈ [0,
1] chance of being replaced with c, a colour code.

Example:

 pmNoise(pm, 0.3, rgb(1, 0, 0))

pmNoise(pm, P, 30000000#16) returns the pixmap pm with
coloured pixel noise. Specifically, each pixel in the result has
a P ∈ [0, 1] chance of being replaced with a random colour.

Example:

 pmNoise(pm, 0.3, 30000000#16)

Hint: You might want to declare a global constant

 randomColour ≔ 30000000#16

in startup.prg.

pmPixelate
pmPixelate(pm, w, h) returns the pixmap pm composed of
blocks of the same colour, with width w and height h.

pmRemoveSizeFromEdges
pmRemoveSizeFromEdges(pm, r, b, l, t) returns the pixmap
pm with r, b, l, and t pixels removed from the right, bottom,
left, and top, respectively.

pmReplaceColour
pmReplaceColour(pm, x, y) returns the pixmap pm with all
pixels with the colour x (a colour code) replaced by the
colour y (another colour code).

pmResize
pmResize(pm, w, h) returns the pixmap pm with the width
and height changed to w and h, respectively, simply by re-
moving pixels from the right and bottom.

pmRGBAdjustment
pmRGBAdjustment(pm, Rmode, Rval, Gmode, Gval, Bmode,
Bval) returns the pixmap pm whith the red, green, and blue
intensities of each pixel transformed separately according to
the component's Xmode and Xval (X = R, G, or B) parameters.

Each Xmode can be either "fixed", "add", or "mul".

 * If Xmode is "fixed", each pixel's X component will be set to
Xval.
 * If Xmode is "add", each pixel's X component will be in-
creased by Xval, that is, its new value will be the sum of its
old value and Xval.
 * If Xmode is "mul", each pixel's X component will be multi-
plied by Xval, that is, its new value will be the product of its
old value and Xval.

Notice that the component identity operation is achieved
either by setting Xmode = "add" and Xval = 0 or by setting
Xmode = "mul" and Xval = 1.

Notice! The resulting red, green, and blue intensities are
finally truncated to [0, 1].

Examples: Let pm be a pixmap variable. Then

 pmRGBAdjustment(pm, "fixed", 0, "add", 0, "add", 0.2)

will return the pixmap pm where the red component of each
pixel has been set to zero and the blue component of each
pixel has been increased by 0.2.

 pmRGBAdjustment(pm, "mul", 5, "add", 0, "add", 0)

will multiply the red component of each pixel by 5.

pmRGBCombine
Essentially, the pmRGBCombine function creates a pixmap
whose red, green, and blue components are taken from three
different pixmaps.

pmRGBCombine(R, G, B) creates a pixmap P such that

 * the red component of pixel (i, j) in P is equal to the red
component of (i, j) in R,
 * the green component of pixel (i, j) in P is equal to the green
component of (i, j) in G, and
 * the blue component of pixel (i, j) in P is equal to the blue
component of (i, j) in B.

The pixmaps R, G, and B need to have the same dimensions,
and P will also have these dimensions.

pmRGBSplit
Essentially, the pmRGBSplit function extracts the red, green,
and blue components of a pixmap.

pmRGBSplit(pm, r, g, b), where pm is a pixmap, creates three
new pixmaps, named r, g, and, b (which have to be strings
representing valid identifiers), where r, g, and b are copies of
pm, but

 * r has all green and blue components equal to zero,
 * g has all red and blue components equal to zero, and

AlgoSim 2.0 User’s Guide

90/110

 * b has all red and green components equal to zero.

pmRot90N
pmRot90N(pm) returns the pixmap pm rotated 90° clock-
wise (that is, negative direction).

pmRot90P
pmRot90P(pm) returns the pixmap pm rotated 90° counter-
clockwise (that is, positive direction).

pmRotate
pmRotate(pm, θ) returns the pixmap pm rotated θ radians
anti-clockwise, expanding the canvas as necessary.

Example: pmRotate(image, 45°)

pmRotateEx
pmRotateEx(pm, θ) returns the pixmap pm rotated θ radians
anti-clockwise, without expanding the canvas even if neces-
sary. Thus, the resulting image is likely cropped.

Example: pmRotateEx(image, 5°)

pmScale
pmScale(pm, x, y) returns the pixmap pm scaled with factors
x and y in the horizontal and vertical directions, respectively.
Thus, pmScale(pm, 1, 1) is the identity transformation. If x =
y, the transformation preserves the shapes of object.
pmScale(pm, 2, 2) magnifies all lengths by a factor 2, and the
total area by a factor 2^2 = 4. pmScale(pm, 2, 1) doubles the
width of the pixmap, preserving the height, thus distorting
shapes.

pmShear
pmShear(pm, x, y) applies a shearing transform to the
pixmap pm, and returns the result. x and y are the magni-
tudes in the horizontal and vertical direction, respectively.
Thus, pmShear(pm, 0, 0) is the identity transformation, and
pmShear(pm, 0.2, 0) applies a small horizontal shear.

It is required that xy ≠ 1.

pmShiftHue
pmShiftHue(pm, h) returns the pixmap pm with the hue of all
pixels increased (modulo 360) by h. The hue is a number
between 0 and 360.

pmSwapBW
pmSwapBW(pm) returns the pixmap pm with all black pixels
replaced by white pixels, and vice versa.

pmSwapRGBComponents
pmSwapRGBComponents(pm, which) returns the pixmap
pm with two of its RGB channels swapped. which is a two-
character string specifying the channels by name: "R", "G,
and "B".

Example:

 pmSwapRGBComponents(pm, "rg")

pmTiles
pmTiles(pm, N), where pm is a pixmap and N a positive
integer, returns a pixmap, no smaller than pm, consisting of a
rectangular grid of N×N rectangular tiles of pm, in a random
order, such that each point in pm is represented in the result
in exactly one tile.

pmTiles(pm, Nx, Ny) creates a tiled picture of Nx rows and
Ny columns.

pmTiles(pm, Nx, Ny, dx) creates a tiled picture of Nx rows
and Ny columns. dx is the spacing between tiles, both verti-
cally and horizontally.

pmTiles(pm, Nx, Ny, dx, c) creates a tiled picture of Nx rows
and Ny columns. dx is the spacing between tiles, both verti-
cally and horizontally. c is the colour of the spacing.

By default, dx = 2 and c = rgb(1, 1, 1) (white). Notice that,
when N = Nx = Ny = 1, this function can be used to create a
solid-colour frame around pm.

pmToBitmap
pmToBitmap(pm, x) returns the pixmap pm with only two
colours, black and white, where the black pixels come from
"dark" pixels in pm, and white pixels come from "bright"
pixels in pm. The threshold for a pixel to be considered
"bright" is given by x ∈ [0, 1]. Thus, if x = 0, all pixels will be
considered bright, and if x = 1, no pixels will be considered
bright.

The "brightness" property is defined as the HSL lightness
value.

pmToGreyscale
pmToGreyscale(pm) returns a grey-scale representation of
the pixmap pm. A pixel with coordinates (h, s, v) is replaced
by (h, 0, v) in HSV coordinates.

pmToMonochromatic
pmToMonochromatic(pm, hue) returns the pixmap pm with
the hue of all pixels set to the fixed value hue, and the satura-
tion set to 1. The value of each pixel is not affected.

pmTransform
pmTransform(pm, M) returns the image of the pixmap after
being transformed by the linear transformation (i.e., a 2×2
square matrix) M.

pmTransform(pm, a11, a12, a21, a22) returns the image of
the pixmap after being transformed by the linear transfor-
mation (i.e., a 2×2 square matrix) ❨❨a11, a12❩, ❨a21, a22❩❩.

pmWidth
pmWidth(pm) returns the width of the pixmap pm.

pNorm
pNorm(v) returns the p-norm of the vector v = ❨a1, a2, ...,
an❩, i.e. the real number

norm(v) = (|a1|^p + |a2|^p + ... + |an|^p)^(1/p).

polarCoords
polarCoords(S) applies the transformation

x = r⋅sin(φ)
y = r⋅cos(φ)

to all two-dimensional polar real vectors (r, φ) in the set S,
and returns the new set of Cartesian coordinates (x, y).

This is useful for plotting polar graphs. Simply create a set S
of polar coordinates (r, φ) and then transform it using

S ≔ polarCoords(S)

after which it can be plotted using drawSet, drawLines, etc.

Example: A cardioid
 cardioid ≔ createImage("❨4⋅(cos(φ) + 1), φ❩", "φ", [0,
2⋅π, 0.001])
 cardioid ≔ polarCoords(cardioid)
 drawSet("cardioid")

polyFit
polyFit(n, X, Y) returns the coefficients ❨a0, a1, a2, ..., an❩ of
the polynomial a0 + a1 x + a2 x^2 + ... + an x^n of degree n

AlgoSim 2.0 User’s Guide

 91/110

that, in a least-squares sense, is the best polynomial curve of
degree n that approximates the point set {❨X_1, Y_1❩, ❨X_2,
Y_2❩, ..., ❨X_k, Y_k❩} where k is the dimension of both real
vectors X and Y.

postMessage
postMessage(h, m, w, l) will post the message m to the win-
dow with handle h, and passing along the wparam w and
lparam l. h, m, w, and l are unsigned integers.

postMessage returns True or False, depending on what
happens with the message.

Examples: postMessage(getParameter("handle", "applica-
tion"), 112#16, F140#16, 0) will start the screen-saver
 postMessage(getParameter("handle", "window"),
112#16, F030#16, 0) will maximize the AlgoSim window.

prevPrime
prevPrime(n) returns the greatest prime number smaller
than or equal to n, if such a number exists (i.e. if n≥2).

prime
prime(n) returns the nth prime number, the first (n=1) being
2.

print
print(s) prints the text (string) s in the console.

processMessages
Obsolete.

product
product(a1, a2, ..., an) returns the product of the real or
complex numbers a1, a2, ..., and an.

sum(v) returns the product of all components in the real or
complex vector v.

QR
QR(A) computes the QR decomposition for the real square
matrix A, i.e. computes an orthogonal matrix Q and a upper-
triangular matrix R, such that QR=A. The matrices Q and R
are stored as the indentifiers "Q" and "R", respectively.

In the current implementation, QR works only for real square
non-singular matrices A.

questionBox
questionBox(str) displays a question box with the message
str (a string) and returns True if the user clicks the "Yes"
button, and False if the user clicks the "No" button.

random
random(S) picks a random element from the set S. Each
member of the set has equal probability of being chosen,
regardless of the data types in S.

randomInt
randomInt(n) returns a random integer in [0, n[. Observe
that n is never returned: all in all, n distinct numbers may be
returned.

randomInt(a, b) returns a random integer in [a, b]. Thus a − b
+ 1 distinct values may be returned.

randomize
randomize(0) selects a new, random, seed for random num-
ber generation.

randomReal
randomReal(0) returns a random real number in]0, 1[.

rank
rank(M) returns the rank of the real or complex matrix M, i.e.
the dimension of the column (or, equivalently, row) space of
M.

Re
Re(z) returns the real part of the complex number z. For a
real number x, Re(x) = x.

rect
rect(x) is the normalized rectangular function. rect(x) = 1 if
|x| < 1/2, and rect(x) = 0 otherwise.

redraw
redraw(0) redraws the current 2D visualization window.

Example: spiral ≔ createImage("❨FresnelC(t), FresnelS(t)❩",
"t", [-10, 10, 0.01])
 drawLines("spiral")
 spiral ≔ createImage("❨FresnelS(t), FresnelC(t)❩", "t",
[-10, 10, 0.01])
 redraw(0)

redraw3
redraw3(0) redraws the current 3D visualization window.

reduceMatrix
reduceMatrix(mat, n), where mat is a real or complex matrix
and n is a positive integer, returns the matrix obtained by
taking every nth row of mat, starting with the first row.

reduceSound
reduceSound(snd, n), where snd is a sound and n is a posi-
tive integer, returns the sound whose samples are every nth
sample of snd, and whose sample rate is set to (1/n)th of the
sample rate of snd. Hence, the returned sound has the same
duration (in seconds) as snd, and is equal to the sound one
would have obtained by recording the physical sound at a
sampling rate equal to (1/n)th of the sample rate used to
record snd.

reduceSound(snd, n) amounts to the same thing as

samples ≔ sndGetSamples(snd)
samples ≔ reduceMatrix(samples, n)
snd ≔ sndMatrixToSound(samples, sndGetSampleRate(snd)
/ n)

but is faster.

reduceVector
reduceVector(v, n), where v is a real or complex vector and n
is a positive integer, returns the vector obtained by taking
every nth component of v, starting with the first component.

regKeyExists
regKeyExists(RootKey, KeyName) returns True if the regis-
try key named KeyName (a string) exists under RootKey.
RootKey is "HKCU", "HKLM, "HKCR, "HKCC", "HKPD",
"HKDD", or "HKU".

regReadValue
regReadValue(RootKey, KeyName, ValName) returns the
data associated with the registry value ValName (a string) in
the key named KeyName (a string) under RootKey. RootKey
is "HKCU", "HKLM, "HKCR, "HKCC", "HKPD", "HKDD", or
"HKU".

regValExists
regValExists(RootKey, KeyName, ValName) returns True if
the registry value ValName (a string) exists in the key named
KeyName (a string) under RootKey. RootKey is "HKCU",
"HKLM, "HKCR, "HKCC", "HKPD", "HKDD", or "HKU".

AlgoSim 2.0 User’s Guide

92/110

reloadOperatorTable
reloadOperatorTable(0) reloads the operator table.

reloadPrograms
reloadPrograms(0) reloads and reinterprets all AlgoSim
programs (*.prg files) in the common and user-specific AS
program folders.

Each time an AlgoSim program is changed, the program
needs to be reinterpreted before the new version can be
used in AlgoSim.

removeDrawing
removeDrawing(s) removes the set named s from the cur-
rent 2D visualization window.

removeDrawing3
removeDrawing3(s) removes the set named s from the
current 3D visualization window.

removeDuplicates
removeDuplicates(v) returns the real or complex vector v
with all duplicates removed. Thus the result is a vector
where each number occurs at no more than one component.

removeDuplicatesFromSet
removeDuplicatesFromSet(S) removes all duplicates from
the set S, so it becomes a "true set".

Example:

Given a set

 S = {❨1, 2❩, ❨1, 2❩, ❨5, 8❩, ❨2, 9❩},

removeDuplicatesFromSet(S) will return

 { ❨1, 2❩, ❨5, 8❩, ❨2, 9❩ }.

renameFile
renameFile(f1, f2) renames the file f1 (a string containing a
valid file name) to f2 (a string containing a valid file name).

reverse
reverse(s) returns the string s spelled backwards.

rgb
rgb(r, g, b) returns the colour code for the colour with the
RGB coordinates r, g, and b.

rgbToHsv
rgbToHsv(r, g, b) returns the three-dimensional HSV coordi-
nates of the colour given by the RGB coordinates r, g, and b,
as a real vector.

ROT13
ROT13(str) transforms the string str using ROT13, i.e. shifts
all letters 13 positions to the right (modulo 26) in the English
alphabet, preserving the case of each letter and all non-
alphabetic characters such as spaces and punctuation marks.

Obviously, str ↦ ROT13(str) is an involution, i.e. str ↦
ROT13(ROT13(str)) is the identity operation on strings.

round
round(x) returns the integer closest to x. If x is equally close
to both ceil(x) and floor(x), ceil(x) is returned.

rowAddMul
rowAddMul(M, m, n, k) returns the real or complex matrix M
after the k times the nth row has been added to the mth row.
This is an elementary row operation, unless k = 0.

Note: to change the matrix M, it is necessary to write

M ≔ rowAddMul(M, m, n, k).

rowMove
rowMove(M, n, m) returns the real or complex matrix M after
rows n and m have been swapped. This is an elementary row
operation.

Note: to change the matrix M, it is necessary to write

M ≔ rowMove(M, n, m).

rowScale
rowScale(M, n, k) returns the real or complex matrix M with
the nth row multiplied by the real or complex number k.

Unless k = 0, this is an elementary row operation, not affect-
ing the solution of a linear equation system.

Note: to change the matrix M, it is necessary to write

M ≔ rowScale(M, n, k).

saveMatrixToFile
saveMatrixToFile(M, s) saves the real or complex matrix M to
the file with file name s.

savePixmapToFile
savePixmapToFile(pm, s) save the pixmap pm to a file. s is
the fully-qualified name of the file, including extension ".asd",
".png", ".bmp", or ".xbm".

savePointSetToFile
savePointSetToFile(set, fn) saves the point set set to the file
with name fn, a string containing a fully-qualified file name,
including extension ".asd".

Important! If the set set contains other elements than real
points (vectors), only the real points (vectors) will be saved,
and no other elements.

By default, the coordinates of the points are saved with
extended precision (10 bytes per coordinate). You can also
choose double precision (8 bytes per coordinate) or single
precision (4 byte per coordinate), by specifying "extended",
"double", or "single" as a third parameter (a string).

saveSoundToFile
saveSoundToFile(snd, s) saves the sound snd to the file with
name s. s must be a fully-qualified file name with extension
".wav".

saveStructToFile
saveStructToFile(str, fn) saves the structure str to file f, a
string containing a valid file name.

saveTableDataToTextFile
saveTableDataToTextFile(tbl, s) saves the table tbl to the file
s. s is a fully-qualified name of the file. Only the textual data
is saved, and thus all formatting is discarded.

saveTableToFile
saveTableToFile(tbl, s) saves the table tbl to the file s. s is a
fully-qualified name of the file.

saveTextToFile
saveTextToFile(s, S) saves the string s to the file named S.

saveVectorToFile
saveVectorToFile(v, s) saves the real or complex vector v to
the file with file name s.

AlgoSim 2.0 User’s Guide

 93/110

saveViewAsBitmap
saveViewAsBitmap(s) saves the current 2D visualization
window to the bitmap with file name s, a fully-qualified
name.

saveViewAsBitmap(s, w, h) saves the current 2D visualiza-
tion window to the bitmap with file name s, a fully-qualified
name. w and h is the width and height of the bitmap, respec-
tively. The bitmap is rerendered using this canvas size.

saveViewAsBitmap3
saveViewAsBitmap3(s) saves the current 3D visualization
window to the bitmap with file name s, a fully-qualified
name.

saveViewAsBitmap3(s, w, h) saves the current 3D visualiza-
tion window to the bitmap with file name s, a fully-qualified
name. w and h is the width and height of the bitmap, respec-
tively. The bitmap is rerendered using this canvas size.

searchUpdates
searchUpdates(0) searches for updates. It displays the cur-
rent and newest version of AlgoSim, and returns True if
there is a newer version, and False if you already are running
the newest version.

sec
sec(x) = 1 / cos(x). x is a real or complex number.

sech
sech(x) is the hyperbolic secant, i.e. sech(x) = 1 / cosh(x).

secondsBetween
secondsBetween(t1, t2) returns the number of seconds
between the date and time structures t1 and t2.

selectColour
selectColour(0) displays a Rejbrand Colour Selector dialog, in
which the user can select a colour. The colour-code is re-
turned.

selectColour(c) displays a Rejbrand Colour Selector dialog, in
which the user can select a colour. The colour-code is re-
turned. The default colour has the code c.

selectColour(c, str) displays a Rejbrand Colour Selector
dialog, in which the user can select a colour. The colour-code
is returned. The default colour has the code c, and the title of
the dialog is str, a string.

sendBugReport
sendBugReport(str) sends the string str to the developer of
AlgoSim (Andreas Rejbrand). This function is intended to be
used for bug reports, suggestions, and other feedback.

Example: sendBugReport("sin appears not to work if ...")

Hint! If you want to write a long message, it might be much
more convenient to do so in a text editor window. To do so,
simply use the command

sendBugReport(inputDialog(0)).

sendMessage
sendMessage(h, m, w, l) will send the message m to the
window with handle h, and passing along the wparam w and
lparam l. h, m, w, and l are unsigned integers.

sendMessage returns the value returned by the function
receiving the message.

Examples: sendMessage(getParameter("handle", "applica-
tion"), 112#16, F140#16, 0) will start the screen-saver

 sendMessage(getParameter("handle", "window"),
112#16, F030#16, 0) will maximize the AlgoSim window.

sendMidiMsg
sendMidiMsg(n, x, y) sends the MIDI message (n, x, y) to the
computer's sound card.

setAntiAliasing
setAntiAliasing(b) activates (b=true) or disables (b=false)
the anti-aliasing of lines in the current 3D visualization
window.

setApproxMode
setApproxMode(b) sets the approximation mode to b, true or
false.

In approximation mode, very small numbers (such as 10^-
30) are approximated to zero. In most computations this is
desired, for in approximation mode sin(π) = 0, not -
5.42101086243⋅10^-20.

However, when actually working with very small numbers,
such as Planck's constant, approximation mode cannot, of
course, be used.

setAxisStyle
setAxisStyle(a, s) sets the style of the axes listed in a, a com-
ma-separated string of axes in {"x", "y"}, to s, a CSS style
string, in the current 2D visualization window.

Example: setAxisStyle("x, y", "colour:red; number-distance:
2; text-colour:yellow; tick-distance: 2; tick-colour:red")

Possible style parameters: colour, number-distance, num-
bers-visible, text-colour, ticks-visible, tick-distance, tick-
colour.

setAxisStyle3
setAxisStyle3(a, s) sets the style of the axes listed in a, a
comma-separated string of axes in {"x", "y", "z"}, to s, a CSS
style string, in the current 3D visualization window.

Example: setAxisStyle3("x, y, z", "colour:red; number-
distance: 2; text-colour:yellow; tick-distance: 2; tick-
colour:red")

Possible style parameters: colour, number-distance, num-
bers-visible, text-colour, ticks-visible, tick-distance, tick-
colour.

setCameraPos
setCameraPos(v) sets the camera position to v ∈ R^3 in the
current 3D visualization window.

setCameraPos(v, d) sets the camera position to v ∈ R^3 in
the current 3D visualization window. The camera is looking
in the d ∈ R^3 direction.

setCameraPos(v, d, u) sets the camera position to v ∈ R^3 in
the current 3D visualization window. The camera is looking
in the d ∈ R^3 direction, and u ∈ R^3 is the vertical (up)
direction.

setComplexMode
setComplexMode(b) sets the complex mode to b, true or
false.

In complex mode, complex numbers are used by all func-
tions. For instance, sqrt(-4) = 2i and arcsin(3) =
1.57079632679 − 1.76274717404⋅i. However, if not in
complex mode (i.e., in real mode), these expressions are
undefined.

AlgoSim 2.0 User’s Guide

94/110

setDir
setDir(s) sets the current working directory to s. s may be an
absolute or relative path.

setFullscreen
setFullscreen(b) sets the fullscreen mode to b, true or false.

setGenerator
Not implemented in this version.

setLight
setLight(b) turns realistic lightning of 3D objects on (true) or
off (false).

Generally, geometric objects such as boxes, cones, spheres
and cylinders that are drawn using the special functions
drawBox3, drawCone, drawSphere, and drawCylinder are
best viewed with lightning, whereas curves and point sets
are best drawn without lightning.

Examples: setLight(true) or setLight(false)

setLightPos
setLightPos(v) moves the light source (spotlight) to v ∈ R^3.

setMatElement
setMatComponent(s, i, j, x) sets the entry i, j of the matrix
named s, a string representing the valid identifier of a matrix
variable, to x, a real or complex number.

setNumDecimals
setNumDecimals(n) sets the number of digits following the
decimal point in all numerical output to n.

setPostProcessing
setPostProcessing(S) sets the set of post-processing opera-
tions to S in the current 2D visualization-window. S is a set of
string identifiers of pre-defined post-processing operations,
including

invert (inverts each pixel's R, G, and B value),
invertValue (inverts each pixel's V value),
invertLightness (inverts each pixel's L value),
greyscale (sets each pixel's S value to zero),
swapBW (swaps white and black pixels),
flipV (flips vertically, i.e. reflects in the line y = h/2, where h
is the height of the pixmap), and
flipH (flips horizontally, i.e. reflects in the line x = w/2, where
w is the width of the pixmap).

setRandomSeed
setRandomSeed(N) sets the seed for random number gener-
ation to N. After each time the seed has been set to a fixed
value N, the same sequence of random numbers will be
returned by the various random number functions.

setSetMode
setSetMode(b) sets the true set mode to b, true or false.

In true set mode, if an element x is added to the set X, it is
first checked if x ∈ X. If so, the element is not added. If not in
true set mode, x is added without checking the existence of x
in X. Thus, X may contain two copies of x afterwards. This
will not affect any computations, but two copies of x will be
shown when the contents of X is printed out.

When working with small sets, it is recommended to use true
sets, but when working with large sets (containing some
million elements), the performance penalty for checking (i.e.
iteration over a million elements) each time an element is
added (perhaps a million times) is not acceptable. Thus,
when working with large sets, please do not use true sets.

setTableCellData
setTableCellData(s, i, j, x) sets the entry i, j of the table named
s, a string representing the valid identifier of a table variable,
to x, a string.

setTableCellStyle
setTableCellStyle(s, i, j, x) sets the style (CSS) of the entry i, j
of the table named s, a string representing the valid identifier
of a table variable, to x, a string.

setToMat
setToMat(S) returns the n×1-dimensional matrix with ele-
ments from the set S.

setToVect
setToVect(S) returns the n-dimensional vector with elements
in S.

setVectComponent
setVectComponent(s, n, x) sets the nth component of the
vector named s, a string representing the valid identifier of a
vector variable, to x, a real or complex number.

setVectMode
setVectMode(b) sets the basis vector notation to b, true or
false.

In basis vector notation, a vector (x, y, z) is written

 ⎛ x ⎞
e⎜ y ⎟
 ⎝ z ⎠

rather than

❨x, y, z❩.

setView
setView(xmin, xmax, ymin, ymax) sets the 2D viewing win-
dow to span xmin to xmax in the horizontal direction, and
ymin to ymax in the vertical direction.

setView3
setView3(xmin, xmax, ymin, ymax, zmin, zmax) sets the 3D
viewing box to the region x ∈ [xmin, xmax], y ∈ [ymin, ymax],
and z ∈ [zmin, zmax]. Note that only some functions respect
this setting.

sgn
sgn(x) returns the sign of the real number x, i.e. sgn(x) = 1 if
x > 0 and sgn(x) = -1 if x < 0. In AlgoSim, sgn(0) = 0, so that it
is not entirely true that sgn(x) is the derivative of abs(x).

showPixmap
showPixmap(pm) draws the pixmap pm on the screen.

showProgramCode
showProgramCode(s) prints the code of the AlgoSim pro-
gram named s.

Si
Si(x) is the sine integral.

Si(x) = ∫sin(t)/t dt = ∫sinc(t)dt from 0 to x.

sieveOfEratosthenes
sieveOfEratosthenes(N) returns a (N + 1)-dimensional vector
whose ith component is 1 if i is a prime number, and 0 oth-
erwise, where i = 0, 1, 2, ..., N. Hence, the two first compo-
nents are both 0, and the third, corresponding to index i = 2,
is the first 1.

AlgoSim 2.0 User’s Guide

 95/110

sieveOfEratosthenes is very fast, and computing
sieveOfEratosthenes(10000000) should take less than a half
second on a modern computer.

Example: sieveOfEratosthenes(50) will return ❨0, 0, 1, 1, 0, 1,
0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0❩

Hint! Pass the returned vector to numberVector to get a
numbered version of it!

sin
sin(x) returns the sine of x. x is a real or complex number.

Construct the unit circle

x^2 + y^2 = 1

in R^2. Draw the line from the origin to the point P at this
circle, such that the angle to this line, counted from the
positive x-axis (anticlockwise is the positive direction) is
equal to x. Then sin(x) is the y-coordinate of P.

For a general complex number z, Euler's identity

sin(z) = (1/2i) ⋅ (exp(iz) − exp(-iz))

defines sin(z). exp is the complex exponential function,
defined such that

exp(z) = e^(Re z) ⋅ (cos (Im z) + i sin (Im z))

where i is the imaginary unit (i^2 = -1) and Re z and Im z are
the real and imaginary parts of z, respectively.

sinc
sinc(x) = sin(x)/x if x ≠ 0, sinx(0) = 1. sinc is the sinc function.

sinh
sinh(x) is the hyperbolic sine, i.e. sinh(x) = (1/2i) ⋅ (e^ix −
e^-ix).

size
size(S) returns the number of members in the set S.

Example: size([1, 100]) = 100

sleep
sleep(x) pauses the execution of the script for x seconds.

sndAppend
sndAppend(snd1, snd2) returns the sound snd1 with snd2
added to the end of it. Thus, the length of the result equals
the sum of the length of snd1 and the length of snd2. snd1
and snd2 must have the same sample rate.

sndGetNumChannels
sndGetNumChannels(snd) returns the number of channels in
the sound snd.

Example: sndGetNumChannels(createSineTone(400, 1)) = 1

sndGetNumSamples
sndGetNumSamples(snd) returns the number of samples in
the sound snd.

Example: sndGetNumSamples(createSineTone(400, 1)) =
48000.

sndGetSampleRate
sndGetSampleRate(snd) returns the sample rate of the sound
snd, in samples per second.

Example: sndGetSampleRate(createSineTone(400, 1)) =
48000

sndGetSamples
sndGetSamples(snd) returns a n×c real matrix with the n
sampes of the c-channel sound snd. A given column thus
represents an individual channel, and if the elements are f(t),
t ∈ [1, n], then f(t) is the speaker membrane's displacement
at time t. The scaling is chosen so that f(t) ∈ [-2^31, 2^31].
Consequently, when superposing sounds, it is important to
make sure that f(t) of the resulting sound never exceeds
2^31 in absolute value.

sndMakeMultichannel
sndMakeMultichannel(snd1, ..., sndN) returns the N-channel
sound obtained when using snd1 as the first channel, ..., and
sndN as the Nth channel. snd1, ..., and sndN must all have the
same sample rate.

sndMatrixToSound
sndMatrixToSound(M, n) returns the sound with the matrix
representation M (one column per channel, one row per
sample, and each element f(t) is the displacement of the
speaker's membrane normalized to lie within [-2^31, 2^31])
and n samples per second.

Example: A pure 400 Hz sine tone
 A ≔ 2^31
 ω ≔ 2⋅π⋅400
 set ≔ createImage("A⋅sin(ω⋅t)", "t", [0, 2, 0.0001])
 snd ≔ sndMatrixToSound(setToMat(set), 10000)

 A frequency-modulated 400 Hz sine tone
 set ≔ createImage("A⋅sin(ω⋅(sin(t)⋅t))", "t", [0, 4⋅π,
0.0001])
 snd ≔ sndMatrixToSound(setToMat(set), 10000)

sndSplitChannels
sndSplitChannels(snd, s1, ..., sN). snd is a sound, and s1, ..., sN
are strings with the names of valid identifiers. The sounds s1,
..., sN will be created with the channels 1, ..., N of snd.

Example: sndSplitChannels(song, "l", "r") creates the sounds l
and r with the left and right channel of the stereo sound
song, respectively.

sndSuperpose
sndSuperpose(snd1, snd2) returns the sound obtained when
superposing snd1 and snd2. snd1 and snd2 must have the
same sample frequency.

solve
solve(eq, var, x0) returns a root of the equation eq in the var
variable, near x0, using the Newton–Raphson method.

Examples: solve("sin(x)/exp(x) + sin(x^2) = 0", "x", -3) = -
3.16520811808

sort
sort(v) returns the vector v sorted numerically.

sort(l) returns the string list (i.e., table with one column)
sorted.

speak
speak(X) speaks the value X using the computer's default
voice (for instance, Microsoft Anna). X is a string, a number, a
vector, a matrix, a boolean, or a table.

Examples: speak(2 + i) will speak "two plus one I".
 speak(❨1, 2, 3❩) will speak "vector: 1, 2, 3".

sphericalCoords
sphericalCoords(S) applies the transformation

AlgoSim 2.0 User’s Guide

96/110

x = r⋅sin(θ)⋅cos(φ)
y = r⋅sin(θ)⋅sin(φ)
z = r⋅cos(θ)

to all three-dimensional spherical real vectors (r, θ, φ) in the
set S, and returns the new set of Cartesian coordinates (x, y,
z).

This is useful for plotting spherical graphs. Simply create a
set S of spherical coordinates (r, θ, φ) and then transform it
using

S ≔ sphericalCoords(S)

after which it can be plotted using drawSet3, drawLines3,
etc.

Example: An illustrative way to draw a grid sphere with
radius 4.
 net ≔ createNet(0, π, 0.01, π/12, 0, 2⋅π, 0.01, π/12)
 paramNet ≔ createImage("❨4, r_1, r_2❩", "r", net)
 sphere ≔ sphericalCoords(paramNet)
 drawSet3("sphere")

sq
sq(x) returns x^2 if x is a real number, a complex number, a
real square matrix, or a complex square matrix.

sqrt
For real numbers, sqrt(x), where x ≥ 0, is the positive root to
the equation a^2 = x with respect to a.

For complex numbers z,

sqrt(z) = exp((1/2) ln(z)).

start
start(s) executes the operating system command s, using the
Win32 API call ShellExecute.

Examples: start(".") opens the current working directory.
 start("C:\") opens the folder C:\.
 start("http://rejbrand.se") opens the URL rejbrand.se
in the system's default web browser.
 start("mailto:andreas@rejbrand.se") opens the sys-
tem's default e-mail client and creates a new message for
Andreas Rejbrand (whose e-mail address is andre-
as@rejbrand.se).
 start("winword") opens Microsoft Word, if installed.

stop
Obsolete.

strBeginsWith
strBeginsWith(S, s) returns True if the string S begins with s,
and false otherwise.

strContains
strContains(S, s) returns True if the string S contains s, and
False otherwise.

strEndsWith
strEndsWith(S, s) returns True if the string S ends with s, and
false otherwise.

strLeft
strLeft(s, n) returns the n first (that is, left-most) characters
in s, a string.

Example: strLeft("Hello World!", 5) = "Hello"

strPos
strPos(s, S) returns the position of the first character in the
string s of the first occurrence of s in the string S.

Example: strPos("st", "testtest") = 3

strReplaceAll
strReplaceAll(S, x, y) replaces all occurrences of x by y in the
string S.

strRight
strRight(s, n) returns the n last (that is, right-most) charac-
ters in s, a string.

Example: strRight("Hello World!", 6) = "World!"

strSplit
strSplit(s, sep) returns a table with all parts of the string s
that has been obtained by splitting it at each occurrence of
the sep separation character. sep is never a part of any string
in the resulting table.

Example: strSplit("Harry|Ron|Hermione", "|") returns the
table with entries "Harry", "Ron", and "Hermione".

structDeleteMember
structDeleteMember(str, mem) deletes the member mem
from the structure str, a string containing the identifier of a
structure variable.

structRenameMember
structRenameMember(str, OldName, NewName) renames
the member OldName to NewName inside the structure str.
str is a string containing the identifier of a structure. This
function alters the structure, so you can think of the first
parameter as being the structure str "passed by reference".

Example:

a ≔ createStruct("firstName", "Andreas", "lastName", "Re-
jbrand", "yearOfBirth", 1987, "IQ", ∞)

firstName: Andreas
lastName: Rejbrand
yearOfBirth: 1987
IQ: ∞

structRenameMember("a", "IQ", "wisdom")

a

firstName: Andreas
lastName: Rejbrand
yearOfBirth: 1987
wisdom: ∞

substring
substring(s, i, n) returns the string of characters i to i + n in s.

Example: substring("Hello World!", 7, 5) = "World"

subvector
subvector(v, S) returns the vector composed of the compo-
nents of v with indices in the set S. Thus, S is a set of integers,
between 1 and the dimension dim(v) of v.

Examples: subvector(❨3, 5, 7, 9❩, {2, 4}) = ❨5, 9❩
 subvector(❨3, 5, 7, 9❩, [2, 4]) = ❨5, 7, 9❩

sum
sum(a1, a2, ..., an) returns the sum of the real or complex
numbers a1, a2, ..., and an.

AlgoSim 2.0 User’s Guide

 97/110

sum(v) returns the sum of all components in the real or
complex vector v.

swap
swap(a, b) swaps the identifiers a and b. a and b are strings
containing the identifiers of two variables.

swap(a, b) is equivalent to

tmp ≔ a
a ≔ b
b ≔ tmp
delete("tmp")

(where "tmp" is a preveously non-existing variable).

sysSolve
sysSolve(M, v) returns the unique solution to the matrix
equation MX = v, where M is a matrix and v is a vector (here
considered a n×1 column matrix), if such a solution exists, i.e.
if det(M) ≠ 0.

sysSolve(M) returns the unique solution to the equation
system represented by the total matrix M, i.e. the augment of
a coefficient matrix and a right-hand side column vector.

sysSolve(M, v) = sysSolve(A) if A = augment(M, v).

tableCols
tableCols(tbl) returns the number of columns in the table tbl.

tableRows
tableRows(tbl) returns the number of rows in the table tbl.

tableToSet
tableToSet(tbl) returns the set of all strings in the table tbl.

tan
tan(x) = sin(x) / cos(x). x is a real or complex number.

tanh
tanh(x) is the hyperbolic cotangent, i.e. tanh(x) = sinh(x) /
cosh(x).

taxiNorm
taxiNorm(v) returns the taxi (Manhattan) norm of the vector
v = ❨a1, a2, ..., an❩, i.e. the real number

taxiNorm(v) = |a1| + |a2| + ... + |an|.

terminatePrograms
terminatePrograms(0) terminates all running AlgoSim pro-
grams.

time
time(0) returns the current time as a structure. The mem-
bers are hour, minute, second, and millisecond.

toBaseN
toBaseN(x, N) returns a string with the base-N representa-
tion of the non-negative integer x.

Example: toBaseN(255, 16) = "FF"

toCamelCase
toCamelCase(str) returns the string str where every charac-
ter is upper-case if and only if it is the first character of a
word.

Example:

toCamelCase("this is a brief text. a very brief text, actually.")
= "This Is A Brief Text. A Very Brief Text, Actually."

toEchelonForm
toEchelonForm(M) applies elementary row operations to the
matrix M (i.e. premultiplies it with elementary matrices)
until it obtains echelon form.

toFraction
toFraction is used to obtain the numerator p and denomina-
tor q of a rational number (or approximated real number) x =
p/q (or at least very close to).

toFraction(x) returns the real number x as a string of the
form "p/q" where p and q are integers, and so that the ra-
tional number p/q ≈ x.

For instance, toFraction(0.0843373493976) = "7/83".

toLowerCase
toLowerCase(s) returns the string s with all letters converted
to lower case.

toRealNumber
toRealNumber(s) returns the real number represented by
the s, if possible.

Example: toRealNumber("1024") = 1024

toSentenceCase
toSentenceCase(str) returns the string str where every
character is upper-case if and only if it is the first character
of a sentence.

Example:

toSentenceCase("this is a brief text. a very brief text, actual-
ly.") = "This is a brief text. A very brief text, actually."

toString
toString(x) returns the real or complex number x as a string.

Example: toString(1024) = "1024"

toSymbolicForm
toSymbolicForm(x) returns the real number x in symbolic
(exact) form, if possible. The function returns a string with
an expression using division, multiplication, square roots,
and constants (such as e and π), evaluating to x, if such an
expression can be found.

Example: toSymbolicForm(0.866025403784439) = "√3/2"

totient
totient(n) is Euler's totient, or φ function, i.e. the number of
positive integers less than or equal to n that are coprime to n.

toUpperCase
toUpperCase(s) returns the string s with all letters converted
to upper case.

tr
tr(M) returns the trace of the real or complex matrix M.

transpose
transpose(M) returns the transpose of the real or complex
matrix M.

trim
trim(s) returns the string s with all leading and ending
whitespace characters (e.g. spaces) removed. Thus, trim(s) =
trimLeft(trimRight(s)) for all strings s.

trimLeft
trimLeft(s) returns the string s with all leading whitespace
characters (e.g. spaces) removed.

AlgoSim 2.0 User’s Guide

98/110

trimRight
trimRight(s) returns the string s with all ending whitespace
characters (e.g. spaces) removed.

trunc
trunc(x) returns x rounded towards 0, i.e. replaces all deci-
mals after the decimal point with zeroes.

txtBeginsWith
txtBeginsWith(S, s) returns True if the text (string) S begins
with s, and false otherwise. No distinction is made between
capital and small letters.

txtContains
txtContains(S, s) returns True if the text (string) S contains s,
and False otherwise. No distinction is made between capital
and small letters.

txtEndsWith
txtEndsWith(S, s) returns True if the text (string) S ends with
s, and false otherwise. No distinction is made between capital
and small letters.

txtPos
txtPos(s, S) returns the position of the first character in the
text (string) s of the first occurrence of s in the text (string) S,
making no difference between capital and small letters.

Example: txtPos("st", "teSTtest") = 3, but strPos("st",
"teSTtest") = 7.

txtReplaceAll
txtReplaceAll(S, x, y) replaces all occurrences of x by y in the
text (string) S. When locating x in S, no distinction is made
between capital and small letters.

type
type(x) returns a string with the [name of the] data-type of
the object x, i.e. "real number", "complex number", "real
vector", "complex vector", "real matrix", "complex matrix",
"string", "boolean", "pixmap", "sound", "table", or "set".

undo
undo(0) removes the most recently added item to the cur-
rent 2D visualization window.

undo3
undo3(0) removes the most recently added item to the
current 3D visualization window.

unloadDictionary
unloadDictionary(0) unloads the currently loaded (see
loadDictionary) dictionary, thus freeing system memory
(RAM).

URLEncode
URLEncode(str) returns the string str properly URL encoded.

Example: URLEncode("1+1=2") = "1%2B1%3D2"

wait
wait(t) suspends execution of the program for t seconds, but
AlgoSim will remain responsive during this time, in contrast
to sleep(t).

warning
warning(s) displays s as a warning message. s is a string.

vectToMat
vectToMat(v) returns a n×1 matrix with entries from the n-
dimensional vector v.

vectToSet
vectToSet(v) returns the set of all components in the n-
dimensional vector v.

week
week(0) returns the current week's number of the year, as a
integer.

weeksBetween
weeksBetween(d1, d2) returns the number of weeks be-
tween the date structures d1 and d2.

Example:

d1 ≔ encodeDate(2010, 06, 19)

year: 2010
month: 6
day: 19
weekOfYear: 24
dayOfYear: 170
dayOfWeek: 6

d2 ≔ date(0)

year: 2010
month: 6
day: 23
weekOfYear: 25
dayOfYear: 174
dayOfWeek: 3

weeksBetween(d1, d2)

0.571428571429

ver
ver(0) returns the version of AlgoSim as a structure. The
structure contains the members major, minor, release, build,
and asString.

VigenèreDecrypt
VigenèreDecrypt(str, key) decrypts the string str using the
Vigenère cipher and the password key.

VigenèreEncrypt
VigenèreEncrypt(str, key) encrypts the string str using the
Vigenère cipher and the password key.

wisdom
widsom(0) returns a random wisdom (as a string).

yearsBetween
yearsBetween(d1, d2) returns the number of years between
the date structures d1 and d2.

Example:

d1 ≔ encodeDate(2010, 06, 19)

year: 2010
month: 6
day: 19
weekOfYear: 24
dayOfYear: 170
dayOfWeek: 6

d2 ≔ date(0)

year: 2010
month: 6
day: 23
weekOfYear: 25
dayOfYear: 174

AlgoSim 2.0 User’s Guide

 99/110

dayOfWeek: 3

yearsBetween(d1, d2)

0.0109514031485

zeroMatrix
zeroMatrix(m, n) returns the m×n matrix with all zero en-
tries.

zeroVector
zeroVector(n) returns the n-dimensional zero vector.

AlgoSim 2.0 User’s Guide

100/110

Appendix II: Pre-Defined User-Customisable Functions
The following functions are implemented the same way the end-user can implement functions, i.e. by us-

ing the

FuncName ≔ “vars” ↦ “expr”

syntax. They are automatically loaded when AlgoSim is loaded, for they are defined in startup.prg (in the

common program directory) that executes every time AlgoSim starts.

startup.prg

inv ≔ "x" ↦ "x^(-1)"

isPerfect ≔ "n" ↦ "sum(divisors(n)) = 2⋅n"

isAlmostPerfect ≔ "n" ↦ "sum(divisors(n)) = 2⋅n − 1"

isSuperPerfect ≔ "n" ↦ "sum(divisors(sum(divisors(n)))) = 2⋅n"

areAmicable ≔ "m, n" ↦ "(sum(divisors(m)) − m = n) ∧

(sum(divisors(n)) − n = m) ∧ (m≠n)"

isDeficient ≔ "n" ↦ "sum(divisors(n)) < 2⋅n"

isAbundant ≔ "n" ↦ "sum(divisors(n)) > 2⋅n"

abundance ≔ "n" ↦ "sum(divisors(n)) − 2⋅n"

isSublime ≔ "n" ↦ "isPerfect(dim(divisors(n))) ∧

isPerfect(sum(divisors(n)))"

isSquareFree ≔ "n" ↦ "¬containsDuplicate(factors(n))"

isNormal ≔ "A" ↦ "A⋅A* = A*⋅A"

isSymmetric ≔ "A" ↦ "transpose(A) = A"

isSkewSymmetric ≔ "A" ↦ "transpose(A) = -A"

isHermitian ≔ "A" ↦ "A* = A"

isOrthogonal ≔ "A" ↦ "transpose(A) = A^(-1)"

isUnitary ≔ "A" ↦ "A* = A^(-1)"

defView ≔ "x" ↦ "drawAxes(clearView(setView(-10, 10, -10, 10),

setAxisStyle('x, y', '')))"

defView3 ≔ "x" ↦ "drawAxes3(clearView3(setView3(-10, 10, -10,

10, -10, 10)))"

today ≔ "x" ↦ "date(0)"

tomorrow ≔ "x" ↦ "addDays(date(0), 1)"

yesterday ≔ "x" ↦ "addDays(date(0), -1)"

fork ≔ "x" ↦ "start(getParameter('path'))"

wolframAlpha ≔ "query" ↦

"start('http://www.wolframalpha.com/input/?i=' +

URLEncode(query))"

OPNOTIN ≔ "A, B" ↦ "¬(A ∈ B)"

numberOfPrimes ≔ "n" ↦ "count([1, n], 'x', 'isPrime(x)')"

AlgoSim 2.0 User’s Guide

 101/110

Appendix III: Example Programs
In AlgoSim, a few example programs are included. (They reside in the common AS program directory.)

Below is a brief description of the most interesting of these. Although the standard way of starting a pro-

gram is to call it from the console (such as billiard(0) or mirrorSim(t ≔ "parabolic")), the simplest way is

to click the Programs button in the left-most column of buttons, and choose program in the Run a Program

submenu.

 billiard.prg

Simulates a 2D billiard dynamical system, i.e. a system in which a particle bounces elastically in a

rectangular box with constant potential (that is, no forces other than at the walls). The trace of the

particle is displayed.

 billiardAnim.prg

Same as billiard.prg, but now the particle is animated in the box, and no trace is shown.

 butterfly.prg

Displays the polar butterfly curve.

 bz.prg

Simulates a “BZ-like” flow of an oscillating chemical reaction.

 garaden.prg

Renders a 3D garden.

AlgoSim 2.0 User’s Guide

102/110

 gitter.prg

Renders a simple cubic (s.c.) 3D lattice of atoms.

 helicoid.prg, cone.prg, helix.prg, hyperboloid.prg, torus.prg, tori.prg

Draws this spatial curve or surface.

 mirrorSim.prg

Simulates reflection in a 2D mirror. Call it with argument t equal to “circular”, “parabolic”, “sine”,

“line”, or “convex parabolic”, as in mirrorSim(t ≔ "parabolic").

 mirrorSim3.prg

Simulates reflection in a 3D mirror. Call it with argument t equal to “spherical” or “parabolic”, as

in mirrorSim3(t ≔ "parabolic").

AlgoSim 2.0 User’s Guide

 103/110

 Möbius.prg

Draws a Möbius strip.

 orthogonalProjection.prg

Draws a few spheres and their orthogonal projection in the xy-plane.

 randomWalk.prg

Simulates 2D four-direction, discrete-step, random walk.

 rutherfordScattering.prg

Simulates Rutherford scattering of an α-particle towards a gold nucleus with a given impact pa-

rameter. The program will, upon execution, ask about the impact parameter.

 rutherfordScattering2.prg

Simulates Rutherford scattering of an α-particle towards a gold nucleus at a number of different

impact parameters.

 sampling.prg

Plays Händel’s Messiah sampled at 44.1 kHz [CD quality], 11.0 kHz, and 5.5 kHz. Because humans

can hear up to 20 kHz, human music must be sampled at no less than 40 kHz if not aliasing is to

appear.

 superposition.prg

Simulates superposition of two circular water waves, and displays the result as a 3D graph.

 superpositionPlane.prg

Simulates superposition of two circular water waves, and displays the result as a coloured plane.

 waveSim.prg

Simulates superposition of two sine waves with different (user-specified) parameters (frequency,

wavelength, amplitude, initial phase).

AlgoSim 2.0 User’s Guide

104/110

Appendix IV: Default Operator Table
postfix ° OPDEGREES 0 0 0
postfix % OPPERCENT 0 0 0
postfix ‰ OPPERMILLE 0 0 0
postfix ! OPFACT 0 0 0
infix # baseNInput 1 0 0
infix _ OPINDEX 0 0 0
infix ^ OPPOWER 0 0 1
prefix - OPMINUS 0 0 0
infix ↑ OPEXP 0 0 0
prefix √ sqrt 0 0 0
prefix ¬ OPNOT 0 0 0
postfix * OPASTERISK 0 0 0
infix / OPDIV 0 0 0
infix ∘ OPCOMPOSITE 0 0 0
infix × OPCROSSMUL 0 0 0
infix ⋅ OPMUL 0 0 0
infix − OPSUB 0 0 0
infix + OPADD 0 0 0
infix | OPBAR 0 0 0
circumfix ⌈ ⌉ ceil 0 0 0
circumfix ⌊ ⌋ floor 0 0 0
circumfix ❨ ❩ OPVECT 0 0 0
circumfix { } OPSET 0 0 0
circumfix [] OPINTERVAL 0 0 0
prefix ∁ OPCOMPLEMENT 0 0 0
infix ∪ OPUNION 0 0 0
infix ∩ OPINTERSECT 0 0 0
infix ∖ OPSETMINUS 0 0 0
infix = OPEQUALS 0 0 0
infix ≈ OPAPPROX 0 0 0
infix ≠ OPNOTEQUAL 0 0 0
infix < OPLESSTHAN 0 0 0
infix > OPGREATERTHAN 0 0 0
infix ≤ OPLESSOREQUAL 0 0 0
infix ≥ OPGREATEROREQUAL 0 0 0
infix ∧ OPAND 0 0 0
infix ∨ OPOR 0 0 0
infix ⊼ OPNAND 0 0 0
infix ⊽ OPNOR 0 0 0
infix ⊻ OPXOR 0 0 0
infix ∥ OPPARALLEL 0 0 0
infix ∦ OPNOTPARALLEL 0 0 0
infix OPORTHOGONAL 0 0 0
infix ∈ OPIN 0 0 0
infix ∋ OPNI 0 0 0
infix ∉ OPNOTIN 0 0 0
infix ∌ OPNOTNI 0 0 0
infix ⊆ OPSUBSET 0 0 0
infix ⊇ OPSUPERSET 0 0 0
infix ⊊ OPPROPSUBSET 0 0 0
infix ⊋ OPPROPSUPERSET 0 0 0
infix ⇒ OPIMPLIES 0 0 0
infix ⇐ OPIMPLIESLEFT 0 0 0
infix ⇔ OPEQUIVALENT 0 0 0
infix ↦ OPMAPSTO 0 0 0
infix ≔ OPASSIGN 1 0 1
infix ≕ OPNGISSA 0 1 0

AlgoSim 2.0 User’s Guide

 105/110

infix ; identity 0 0 0

AlgoSim 2.0 User’s Guide

106/110

Appendix V: Default Table of Constants
speed of light 299792458
elementary charge 1.602176487⋅10^(-19)
electron mass 9.10938215⋅10^(-31)
proton mass 1.672621637⋅10^(-27)
neutron mass 1.67492729⋅10^(-27)
atomic mass unit 1.660538782⋅10^(-27)
electric constant 8.854187817⋅10^(-12)
magnetic constant 4⋅π⋅10^(-7)
Coulomb's constant 8.987551787⋅10^9
Avogadro constant 6.02214179⋅10^23
Faraday constant 96485.3383
gas constant 8.314472
Boltzmann constant 1.3806504⋅10^(-23)
Wien's displacement constant 2.8977685⋅10^(-3)
Stefan-Boltzmann constant 5.6704⋅10^(-8)
Planck's constant 6.62606896⋅10^(-34)
Planck's constant over 2π 1.054571628⋅10^(-34)
gravitational constant 6.6726⋅10^(-11)
acceleration of gravity 9.81
bohr radius 5.29177208⋅10^(-11)
ground-state energy of hydrogen atom 13.605692
Rydberg constant 1.0973731569⋅10^7
bohr magneton 9.274009⋅10^(-24)
nuclear magneton 5.0507832⋅10^(-27)
fine-structure constant 0.007297352533
solar radius 6.96⋅10^8
solar mass 1.9891⋅10^30
solar surface temperature 5778
earth's radius 6.371⋅10^6
earth's mass 5.9736⋅10^24
astronomical unit 1.4959787⋅10^11
light-year 9.46055⋅10^15
beard-second 10^(-8)
Ångström 10^(-10)
parsec 3.0857⋅10^16
age of universe 1.375⋅10^10
Hubble constant 74.2
standard atmosphere 101325
Feigenbaum constant 4.66920160910299067185320382
Napier's constant exp(1)
golden ratio (1+sqrt(5))/2
Euler-Mascheroni constant 0.57721566490153286060651209
pi 2⋅arccos(0)
imaginary unit sqrt(-1)
googol 10^100

AlgoSim 2.0 User’s Guide

 107/110

Appendix VI: Online Help
Within AlgoSim, you can search for identifiers (functions and variables) by pressing the Tab key in the

console. By entering characters you can filter the list of identifiers.

In addition, when the caret is inside an identifier in the console, or when an identifier has been selected in

the Identifiers dialog (see above), you can press F1 to show the reference associated with the identifier.

AlgoSim 2.0 User’s Guide

108/110

Appendix VII: A Few Tips & Tricks

 Numbers and Strings

Of course you can add two numbers (5 + 3) and two strings (“test” + “ again”) together, but you

can also add a string to a number; then AlgoSim will automatically convert the number to a string,

and add these strings. For example, “test” + 5 yields the string “test5”.

 Functions That Require no Arguments

Functions that require no arguments will ignore all arguments sent to them. This can be highly

useful. As an example, say that you want to examine the three polar graphs r = sin(φ), r = cos(φ),

and r = tan(φ). Then you can write

drawSet("set")

redraw(set ≔ polarCoords(createImage("❨sin(φ), φ❩","φ", [0, π/2,

0.01])))

redraw(set ≔ polarCoords(createImage("❨cos(φ), φ❩","φ", [0, π/2,

0.01])))

redraw(set ≔ polarCoords(createImage("❨tan(φ), φ❩","φ", [0, π/2,

0.01])))

 Mod Operator

You might want to redefine % to map to mod, so that it will work as in C/C++.

 Common Constants

If you use some constants very often, you might want to add them to startup.prg. For instance,

m ≔ constant("electron mass")

qe ≔ constant("elementary charge")

 Bitwise Logic

When used with unsigned 32-bit integer operands, the boolean operators ∧, ∨, ⊻, etc. will act as

bi wi e nd or xor e For in n e # ∨ # will re-

turn 56827, and toBaseN(56827, 2) = 1101110111111011.

 Integer Booleans

In many programming languages, booleans are nothing but integers. Most often, 0 represents

false, and a non-zero integer, particularly 1 (sometimes -1 due to its most common binary repre-

sentation) represents true. You can use integer booleans in AlgoSim as well by using trivial map-

pings between * + and . To convert a boolean to 0 or 1, use the Iverson bracket:

, - and , - . To convert an integer to a boolean, simply test v l .

AlgoSim 2.0 User’s Guide

 109/110

 When Something Appears to Be Wrong

AlgoSim lets the end-user manipulate the system in great detail: the user can even redefine or

remove common arithmetical operators and constants such as “+”, “−”, “π”, and “e”! If you suspect

that there is something wrong with the current AlgoSim session, you can enter the command

identifyProblems. This function will make AlgoSim try automatically to identify potential prob-

lems in the current session, both technical issues, and problems caused by the user. Some issues

may even be corrected automatically.

Copyright © 2010 Andreas Rejbrand

www.english.rejbrand.se

http://www.english.rejbrand.se/

	Preface
	The Main Window
	Performing Calculations
	Keyboard Input
	Variables and Functions
	The Exponentiation Operator
	Base-𝑵 Calculations
	Aborting a Slow Procedure
	Automatic “Ans” Argument (AAA)
	The Semicolon Operator

	Visualisation
	2D graphs
	2D parametrised curves
	Coloured Sets
	3D surfaces
	3D curves
	Implicit Sets
	Non-Cartesian Coordinate Systems
	Complex Visualisation
	Coloured Planes
	The Beauty of the Two-Step Approach
	Final Words on Visualisation

	Physical Simulations
	Force Fields
	Flows

	Auditory Visualisation
	MIDI Functions

	Some More Functions in Focus
	Real and Complex Numbers
	Vectors and Matrices
	Texts (strings)
	Pixmaps
	Sounds and MIDI Functions
	More

	The Operator Table
	Programming
	The If Conditional
	The Repeat Loop
	The DoWhile Loop
	The For Loop
	The Iterate Loop
	Entering Programs
	A Few Examples
	Möbius.prg
	doors.prg
	waveSim.prg
	rutherfordScattering2.prg
	mirrorSim.prg

	Programming Reference Chart

	Database of Mathematical and Physical Constants
	Dictionaries
	Saving/Loading Data
	Appendix I: Function Reference
	Appendix II: Pre-Defined User-Customisable Functions
	startup.prg

	Appendix III: Example Programs
	Appendix IV: Default Operator Table
	Appendix V: Default Table of Constants
	Appendix VI: Online Help
	Appendix VII: A Few Tips & Tricks

